
ii

 Inatel

Performance Evaluation of IoT Middleware

Mauro Alexandre Amaro da Cruz

 Dezembro/2017

iii

Performance Evaluation of IoT Middleware

Mauro Alexandre Amaro da Cruz

Dissertação apresentada ao Instituto

Nacional de Telecomunicações, como parte

dos requisitos para obtenção do Título de

Mestre em Telecomunicações.

ORIENTADOR: Prof. Dr. Joel José Puga

Coelho Rodrigues

Santa Rita do Sapucaí 2017

iv

v

Performance evaluation of IoT middleware

Dissertação apresentada ao Instituto

Nacional de Telecomunicações – Inatel,

como parte dos requisitos para obtenção do

Título de Mestre em Telecomunicações.

Trabalho aprovado em______/______/______ pela comissão julgadora:

Prof. Dr. Joel José Puga Coelho Rodrigues

Orientador – Inatel

Prof. Dr. Plácido Rogério Pinheiro

Universidade de Fortaleza (UNIFOR)

Prof. Dr. Antônio Marcos Alberti

Inatel

Prof. Dr. José Marcos Câmara Brito

Coordenador do Curso de Mestrado

Santa Rita do Sapucaí-MG – Brasil

2017

vi

vii

 “Intelligence is a gift that must be used to help mankind”.

Spider-Man 2 (2004)

viii

ix

Dedicatória

Aos meus Pais e irmãos que me ensinaram o caminho da

verdade com o objetivo de me tornar uma pessoa

capacitada e responsável.

x

xi

AGRADECIMENTOS

Primeiro quero agradecer a Deus pelo dom da vida, e pelas sucessivas bençãos.

Agradecimento especial ao Ministério das Telecomunicações e Tecnologias de

Informação de Angola pela concessão da bolsa de estudo. Em especial ao Ministro das

Telecomunicações e Tecnologias de Informação, José Carvalho da Rocha, bem como ao

Director do fundo de apoio às telecomunicações, Américo dos Santos.

Agradeço ao Prof. José Marcos Câmara Brito, que acreditou no meu potencial quando

mais ninguém acreditava, e num dia em que tudo parecia perdido disse: Não fica triste,

você é inteligente, vai conseguir.

Agradeço ao meu orientador Prof. Joel José Puga Coelho Rodrigues que sempre foi muito

paciente, usando métodos para que eu pudesse aprender. Obrigado pelos conselhos,

ensinamentos, confiança e valiosa orientação.

Agradeço a Gisele Moreira dos Santos, da seção de registros acadêmicos. Sem sombra de

dúvidas a pessoa mais importante do Mestrado.

Agradeço ao Instituto Nacional de Telecomunicações-Inatel, Brazil pelo apoio neste

trabalho, bem como a todos Professores pelos preciosos ensinamentos, em especial aos

Professores Antônio Marcos Alberti e Luciano Leonel Mendes. Agradeço também ao

Leonardo Luciano de Almeida Maia, coordenador do escritório internacional do Inatel.

Agradeço aos meus amigos e colegas do Mestrado. Em especial, Wanler Gaspar, Elvira

Diogo, Branislav Coseiro, Ivo Guimarães, Natacha de Carvalho, Eliet Cardoso, Danielly

Bravin, Bruna Ferreira, Erica Santos, Chandala Carvalho, Malenga Landama, Indira

Marília, Diego Amorim, Ellen Paradello e Bianca Magri.

Agradeço à minha família que mesmo distante esteve sempre presente.

Agradeço de forma especial a minha namorada Sheila Janota pelo apoio e compreensão

na finalização deste trabalho.

xii

xiii

Contents

Contents ... xiii

LIST OF FIGURES ... xv

LIST OF TABLES .. xvii

LIST OF ABBREVIATIONS AND ACRONYMS ... xix

RESUMO .. xxi

ABSTRACT .. xxiii

Chapter 1: Introduction ... 1

1.1. Motivation ... 1

1.2. Problem definition ... 1

1.3. Objectives .. 3

1.4. Thesis statement .. 4

1.5. Document organization ... 4

1.6. Publications ... 5

Chapter 2: Internet of Things Middleware ... 7

2.1. Introduction to Internet of Things ... 7

2.1.1 The standards competition .. 8

 Connecting to the Internet in IoT .. 9

2.1.3 Simplified IoT architecture ... 12

2.2. IoT platforms ... 13

2.2.1 Functional requirements .. 13

2.2.2 Non-functional requirements ... 14

2.2.3 IoT platform categories ... 16

2.3. IoT middleware platforms ... 19

2.4. Middleware reference architecture modules ... 25

Chapter 3: Performance Metrics for IoT Middleware .. 31

3.1. Qualitative (filter) metrics ... 31

3.1.1 Security ... 32

3.1.2 Supported application protocols .. 34

xiv

3.1.3 Provided Standard Development Kits ... 34

3.1.4 Number of updates .. 34

3.1.5 Honorable mentions .. 35

3.2. Quantitative metrics .. 37

3.2.1 Packet size ... 37

3.2.2 Error percentage .. 37

3.2.3 Variation of response times ... 38

3.2.4 Honorable mentions .. 38

Chapter 4: Performance evaluation of IoT middleware ... 41

4.1. Experimentation Scenario ... 41

4.2. Performance evaluation considering qualitative metrics ... 42

4.3. Performance assessment of IoT middleware using quantitative metrics 44

4.3.1 Packet size to publish data .. 45

4.3.2 Error percentage .. 46

4.3.3 Response times .. 47

Chapter 5: Conclusion and future work .. 53

5.1. Learned lessons ... 53

5.2. Main Conclusions .. 55

5.3. Future work ... 57

References .. 59

xv

LIST OF FIGURES

FIGURE 1 – ILLUSTRATION OF (A) HUMAN-GENERATED DATA, AND (B) HUMAN-GENERATED DATA

TRANSFORMED INTO MACHINE-GENERATED DATA. .. 2

FIGURE 2 – ILLUSTRATION OF THE ZIGBEE ARCHITECTURE CONNECTING TO THE INTERNET THROUGH A

TCP/IP GATEWAY. ... 10

FIGURE 3 – ILLUSTRATION OF SIGFOX/LORA OVERALL ARCHITECTURE. .. 11

FIGURE 4 – SIMPLIFIED IOT LAYERED ARCHITECTURE. ... 12

FIGURE 5 – ILLUSTRATION OF THE COMMUNICATION (A) WITHOUT MIDDLEWARE AND (B) WITH

MIDDLEWARE. .. 19

FIGURE 6 – DEFINITION OF A MODEL FOR IOT PLATFORM MODULES. .. 29

FIGURE 7 – ANALYSIS OF PACKET SIZE OF A SINGLE REQUEST WHERE 1, 15, AND 100 PARAMETERS WERE

SENT CONSIDERING THE INATELPLAT, KONKER, LINKSMART, ORION+STH, AND SITEWHERE

MIDDLEWARE. .. 46

FIGURE 8 – ANALYSIS OF THE ERROR PERCENTAGE FOR 1000, 5000, AND 10000 USERS WHERE 1, 15, AND

100 PARAMETERS WERE SENT CONSIDERING THE INATELPLAT, KONKER, LINKSMART, ORION+STH,

AND SITEWHERE MIDDLEWARE. ... 47

FIGURE 9 – ANALYSIS OF RESPONSE TIME FOR 100 CONCURRENT USERS WHERE 1, 15, AND 100

PARAMETERS WERE SENT CONSIDERING THE INATELPLAT, KONKER, LINKSMART, ORION+STH, AND

SITEWHERE MIDDLEWARE. ... 48

FIGURE 10 – ANALYSIS OF THE RESPONSE TIME FOR 1000 CONCURRENT USERS WHERE 1, 15, AND 100

PARAMETERS WERE SENT CONSIDERING THE THE INATELPLAT, KONKER, LINKSMART, ORION+STH,

AND SITEWHERE MIDDLEWARE. ... 49

FIGURE 11 – ANALYSIS OF THE RESPONSE TIME FOR 5000 CONCURRENT USERS WITH 1, 15, AND 100 SENT

PARAMETERS CONSIDERING THE INATELPLAT, KONKER, LINKSMART, ORION+STH, AND SITEWHERE

MIDDLEWARE. .. 50

FIGURE 12 – ANALYSIS OF THE RESPONSE TIME FOR 10000 CONCURRENT USERS WITH 1, 15, AND 100 SENT

PARAMETERS CONSIDERING THE INATELPLAT, LINKSMART, ORION+STH, AND SITEWHERE

MIDDLEWARE. .. 51

FIGURE 13 – ILLUSTRATION OF SITEWHERE GRAPHICAL USER INTERFACE. .. 51

FIGURE 14 – SITEWHERE GRAPHICAL USER INTERFACE SHOWING SENT PARAMETERS TO SITEWHERE’S

DATABASE.. 52

xvi

xvii

LIST OF TABLES

TABLE 1 – AVAILABLE IOT PLATFORMS AND CORRESPONDING TARGETED AREAS. 18

TABLE 2 – PROPOSED QUALITATIVE METRICS FOR IOT MIDDLEWARE EVALUATION 36

TABLE 3 – PROPOSED QUANTITATIVE METRICS FOR IOT MIDDLEWARE EVALUATION 39

TABLE 4 – QUALITATIVE COMPARISON CONSIDERING DEVICEHIVE, ORION+STH, KAA, KONKER,

LINKSMART HDS, NIMBITS, NITROGEN, OPENIOT, SITEWHERE, WEBINOS, AND INATELPLAT. 42

TABLE 5 – HOST AND GUEST HARDWARE SPECIFICATIONS. ... 45

TABLE 6 – OPERATING SYSTEM WHERE EACH SOLUTION WAS RUNNING. .. 45

xviii

xix

LIST OF ABBREVIATIONS AND ACRONYMS

SOA –Service-Oriented Architecture

OWL – Web Ontology Language

QoS – Quality of Service

IPv4 – Internet Protocol version 4

IPv6 – Internet Protocol version 6

OMA – Open Mobile Alliance

W3C – World Wide Web Consortium

HTTP – Hypertext Transfer Protocol

HTTPS – Hypertext Transfer Protocol Secure

MQTT – Message Queing Telemetry Transport

SDK – Software Development Kit

CoAP – Constrained Application Protocol

JSON – JavaScript Object Notation

PnP – Plug and Play

IoT – Internet of Things

CRM – Customer Relationship Management

ERP – Enterprise Resource Planning

OS – Operating System

LVM – Logical Volume Manager

PaaS – Platform as a Service

RTT – Round-trip Time

LAN – Local Area Network

XML – eXtensible Markup Language

JSON – JavaScript Object Notation

SenML – Sensor Markup Language

GUI – Graphical User Interface

xx

xxi

RESUMO

A Internet de Coisas (do Inglês, Internet of Things – IoT) é um termo usado para

descrever um ambiente em que Bilhões de objetos que possuem restrições de recursos

("coisas”) estarão conectados à Internet e interagindo de forma autônoma. Com tantos

objetos interagindo de forma autônoma em soluções IoT, o ambiente no qual eles estão

inseridos torna-se mais inteligente. Um software, chamado middleware, desempenha um

papel fundamental pois é responsável por parte da inteligência em IoT, atuando como um

"cérebro", integrando dados de dispositivos, permitindo que eles se comuniquem e tomem

decisões com base em dados coletados. Por natureza, os ambientes inteligentes são

heterogêneos. Com uma infinidade de tecnologias disponíveis, o middleware pode

prosperar, desempenhando um papel ainda mais relevante em ambientes amplos e

extremamente complexos como cidades inteligentes. Esta dissertação explora os

requisitos das plataformas para IoT, propõe um modelo de arquitetura de referência para

middleware IoT e detalha o melhor método de operação de cada módulo proposto. O

documento também propõe métricas, tanto qualitativas quanto quantitativas, para

avaliação de soluções de middleware, que se pretende o mais objetiva possível. A seguir,

efetua-se um estudo de avaliação comparativa do desempenho de soluções de middleware

de código aberto (open-source) e de uma solução proprietária desenvolvida pelo Inatel

no cenário do Inatel Smart Campus. Efetua-se a análise dos resultados e conclui-se que

as métricas propostas estão muito bem ajustadas a este tipo de soluções e podem

desempenhar um papel extremamente importante na escolha das melhores soluções tanto

em trabalhos de pesquisa como em ambientes reais e para a indústria. A plataforma

Sitewhere é a solução de middleware que obteve melhor desempenho no estudo realizado.

Palavras chave – Arquitetura de middleware para IoT, Internet das Coisas, IoT,

Middleware, Métricas de avaliação do desempenho, Plataforma, Qualitativa,

Quantitativa.

xxii

xxiii

ABSTRACT

The Internet of Things (IoT) is a term used to describe an environment where

Billions of objects that are constrained in resources ("things") are connected to the

Internet, and interacting autonomously. With so many objects interacting in IoT solutions,

the environment in which they are inserted becomes smarter. A software called

middleware plays a key role since it is responsible for most of the intelligence in IoT,

acting as a "brain", integrating data from devices, allowing them to communicate, and

make decisions based on collected data. Smart environments are heterogeneous by nature,

considering the plethora of available technologies, and middleware can thrive, playing

even a more relevant role in large scenarios, such as smart cities. This dissertation

explores the requirements of IoT platforms, proposes a reference architecture model for

IoT middleware, and details the best operation method of each proposed module. The

document also proposes metrics, both qualitative and quantitative to evaluate middleware

solutions objectively. Then, a performance evaluation study of open-source middleware

solutions, as well as a proprietary solution developed by Inatel for the Inatel Smart

Campus scenario. The results are analyzed and it is concluded that the proposed metrics

are well adjusted for this type of solution and can play an important role when choosing

the best solutions for a research work, as well as for real-life environments and industry.

Sitewhere is the middleware solution that obtained better performance in the conducted

study.

Keywords – Internet of Things, IoT, Middleware, Middleware architecture for

IoT, Performance evaluation metrics, Platform, Qualitative, Quantitative.

1

Chapter 1: Introduction

1.1. Motivation

The increasing miniaturization of electronic components and technologies has

enabled the development of connected objects to the Internet for various applications.

The term Internet of Things or IoT (Internet of Things) has been used to characterize

this class of new products, which is mostly composed of sensors and actuators, that are

connected to the Internet. Several segments of the industry are using wireless sensor

networks (WSNs), and machine-to-machine (M2M) communication, changing the way

business and processes are managed and optimized. Entire systems are composed of

several sensors connected to a network, which collect and provide updated data. These

sensors allow companies to look at their products and processes from an entirely new

perspective. It is estimated that the number of Internet-connected devices will reach 50

Billion by 2020 [1]. This significant number of connected devices calls the attention of

academia, industry, and regulators, since the total annual economic impact due to IoT is

estimated to range from 2.7 to 6.2 trillion USD (United State Dollars) by 2025 [2]. It is

a common misconception to think that the value of IoT consists on being able to

remotely control objects through a mobile application. The real value of IoT relies on

the data collected by the objects, especially after it is processed according to a context

[3]. A software called middleware will be the focus of this dissertation because it is

responsible for gathering data from devices, allowing them to communicate, and make

decisions based on collected data.

1.2. Problem definition

When the Internet was envisioned, the primary concern was connectivity among

computer networks and human-generated data. This paradigm prevailed for many years

but is shifting with the uprising of IoT. These things make machine-generated data more

relevant, since the number of Internet-connected devices contrasts with the 7.7 billion

human population that is estimated in the same period [4]. The number of IoT-enabled

devices is expected to grow exponentially, so the amount of machine-generated data

2

will follow the same path. As the number of devices with a computational capacity

increase, the surrounding environment will be smarter [5].

Human-generated data refers to the data that are produced through the recording

of human choices or is pre-processed by a human (e.g., when clicking a “like” button

on social media, computer stores the data). In another perspective, machine-generated

data refers to data that are produced entirely by a machine as a result of its decisions.

These data can also be generated by observing humans instead of recording only their

actions (e.g., data analytics and big data). Figure 1 illustrates two scenarios of human-

generated and machine-generated data. In (a), a camera records a video and saves the

data to a hard disk, this counts for human-generated data. In (b), a camera is recording

video, stores it in a hard drive and, then, analyses the footage, extracting meaning and

context from the recording, this counts for machine-generated data.

Figure 1 – Illustration of (a) human-generated data, and (b) human-generated data transformed into

machine-generated data.

The amount of data produced by large IoT environments, such as Smart Cities,

is unprecedented because they heavily rely on machine-generated data. These data

increasing pose significant challenges for researchers and industry. One of these

difficulties is related to M2M communications. The main principle of communication

implies that each collocutor must “speak” the same language. In IoT, this is a big issue

since there is a plethora of devices, each one with its own language that does not follow

the standards [6] (as well as vendors that are not concerned with the compatibility of

their product devices with others). Human history shows that different regions adopt

different standards. Power sockets are a notable example of how difficult it is to select

a standard, they exist for at least a century, and various standards are used across the

globe. In IoT, this compatibility problem is solved through middleware [7][8], a

3

software that provides interoperability between incompatible devices and applications.

Otherwise, they should not communicate. IoT environments, such as smart cities, are

tremendously heterogeneous, and IoT middleware is one of the technologies that

enables them [9][10]. In the literature, IoT middleware solutions are sometimes referred

to as IoT platforms or IoT middleware platforms because generally, the middleware is

a platform, but it is not the only type of IoT platform. Developing/selecting an IoT

middleware is not a simple task since there are many architectural and service

requirements that even when developers agree upon, the final implementation may not

cover specific scenarios or even parts of everyday situations. Another problem is that

there are many middleware solutions, both open-source and proprietary offered by

technology companies, all very similar to each other regarding the provided features;

and no performance metrics, or even guidelines to objectively compare this type of

software are defined in the literature.

1.3. Objectives

The main objective of this dissertation is to conduct a performance evaluation

study of open-source middleware solutions, as well as a proprietary solution from Inatel,

using objective metrics. The study will also act as a guideline for those trying to choose

or create a middleware for their IoT solution. To attain this main objective, the following

partial objectives were defined:

• Review the IoT middleware solutions and performance evaluation

mechanisms for middleware systems available in the literature.

• Identification of functional and non-functional requirements of IoT

middleware solutions;

• Proposal of qualitative and quantitative metrics for IoT middleware;

• Selection of solutions for the comparison study;

• Performance evaluation and results analysis of the studied IoT

middleware considering the identified requirements and proposed metrics according to

the Inatel Smart Campus scenario.

4

1.4. Thesis statement

The choice of an IoT middleware is highly critical for real IoT solutions, given

the complexity and diversity involved in IoT environments. A performance assessment

based on objective metrics can substantially contribute to selecting the best middleware

for each scenario under study. Without middleware solutions in IoT, it can get the point

where only devices from partner brands can interact with each other.

The middleware solutions can be evaluated in a real environment where it is

possible to determine which is best for a given IoT solution. The performance evaluation

scenario considered for this study is based on the Inatel Smart Campus project, since

“the best” middleware is conditioned by the environment in which it is deployed.

1.5. Document organization

The remainder of this dissertation is organized as follows. Chapter 2 provides an

overview of the IoT technologies, displaying sizable challenges it faces, highlighting

the vital role played by IoT platforms, and more specifically, IoT middleware platforms.

A reference architecture model is proposed, that details the best operation method of

each module of an IoT middleware platform. Chapter 3 proposes qualitative and

quantitative performance metrics to evaluate middleware solutions. Chapter 4 evaluates

open-source middleware solutions using the proposed qualitative and quantitative

metrics. Chapter 5 concludes the dissertation, displaying invaluable learned lessons,

main conclusions, and suggestion for further studies.

5

1.6. Publications

During this research work, three scientific papers were published.

Publication in International Journals:

1. Mauro A. A. da Cruz, Joel J. P. C. Rodrigues, Jalal Al-Muhtadi, Valery

Korotaev, Victor Hugo C. Albuquerque, “A Reference Model for Internet of

Things Middleware,” in IEEE Internet of Things Journal, IEEE, ISSN: 2327-

4662, DOI: 10.1109/JIOT.2018.2796561 (online; in press). ISI Journal Citation

Report with impact factor 7.596 in 2016; Scimago journals ranking: Q1; Qualis

B2.

2. Mauro A. A. da Cruz, Joel J. P. C. Rodrigues, Arun K. Sangaiah, Jalal Al-

Muhtadi, Valery Korotaev, “Performance Evaluation of IoT Middleware,”

in Journal of Network and Computer Applications, Elsevier, ISSN: 1084-8045

(online; in press). ISI Journal Citation Report with impact factor 3.500 in 2016;

Scimago journals ranking: Q1; Qualis A1.

Publication in International Conference:

3. Mauro A. A. da Cruz, Joel J. P. C. Rodrigues, Kashif Saleem, Andre L. L.

Aquino, “Towards Ranking IoT Middleware Platforms Based on Quantitative

and Qualitative Metrics,” 1st IEEE International Summer School on Smart Cities

(IEEE S3C 2017), Natal-RN, Brazil, Aug. 6-11, 2017.

6

7

Chapter 2: Internet of Things Middleware

2.1. Introduction to Internet of Things

The term Internet of Things (IoT) was credited by Kevin Ashton when he started

a presentation entitled “That ‘Internet of Things’ Thing”, in 1999 [11]. From then,

enormous contributions were made on the topic. The Internet of Things is sometimes

also referred as the Internet of Everything (IoE) [12]. The IoT is currently considered a

relevant topic for researchers, consumers, and service providers. Since its beginning, the

term has suffered minimal modifications. Nevertheless, the basics are still the same. IoT

can be described as a fancy term for a scenario where anything may be inserted in a

network, be uniquely identified, and interact with minimal human intervention [13] [14].

These things can belong to the real world (physical things) both from inanimate pieces

and to living animals, or the virtual world (virtual “things”) that only exists in a

simulation environment [14]. To simplify, a “thing” is an ordinary device that can be

uniquely identified and connected to the Internet. Then, if users or applications have

access to the information and communicate with these things (objects) through the

Internet, it can be considered IoT scenario. It is expected that by 2020, about 50 billion

objects may be connected to the Internet [1]. At first glance, it might seem an

exaggerated number (and, maybe, it can be), but history has shown that, as the physical

size and price of certain technologies reduce, more people can access to them and,

consequently, their presence becomes ubiquitous in daily life [15]. For instance, since

2015, the smartphone has surpassed the laptop as the most important device for

connecting to the Internet in the UK [4] and, from 2008, there are more devices

connected to the Internet than all the world population [1]. Also, 84% of the world

population lives in areas where Internet services are offered [16].

Considering the IoT definition, it is easy to conclude that IoT follows the basic

principle of things “speaking” the same language, using technologies that perform a

good communication among them. To illustrate it, imagine the following scenario: an

interesting woman profile is spotted on a social network, and a conversation is initiated

through the chat. Both realize that one speaks English and the other Russian. The

conclusion is simple. Despite having a direct way to communicate, they do not

understand each other, because they are just sending/receiving meaningless data

8

(content). Therefore, none of them can make meaning of it. The same principle applies

when “things” interact. Regardless they have an Internet connection, if they cannot

interpret each other, the communication will be futile and does not exist.

In computer science, middleware software mediates these interactions. Without

middleware solutions, programmers must read a new software specification every time

they integrate new software packages, turning these tasks difficult and very time-

consuming. In this regard, numerous organizations struggle and prefer integrated

solutions from the same vendor, even when they are insufficient or too complicated for

their needs because of the simplicity provided by solutions from the same vendor. In

IoT, organizations and users will use multiple (and incompatible) software. Then,

middleware will be one of its enabling technologies [13][17]. Considering the enormous

importance of middleware in IoT, the dissertation studies the requirements of IoT

platforms, and notices that in literature IoT middleware are sometimes referred to as IoT

platforms even though they are not the only type of IoT platforms. Then, the document

proposes a reference architecture model for IoT middleware that details the best

operation method of each module. The dissertation also proposes qualitative as well as

quantitative metrics to objectively evaluate middleware solutions. Then, it makes use of

the proposed metrics to evaluate open-source middleware solutions, as well as a

proprietary solution from Inatel.

2.1.1 The standards competition

There will be different devices from different brands and vendors in IoT. Currently,

most IoT devices are only compatible with devices from the same brand, or partner

brands. For this reason, several standardization initiatives such as IPSO Alliance,

AllSeen Alliance, OneM2M, Openconnectivity, Fiware, OpenFog, OpenDaylight, and

many more were created. All of these initiatives are developing reference architectures

or standards for all IoT layers with the purpose of delivering a more efficient and

sustainable IoT. The problem with standards is that history proves that different regions

adopt different standards because of many factors that can range from price,

implementation complexity, or even political reasons. Power sockets are a notable

example, they exist for at least a century, and different standards are adopted across the

globe. Big tech companies appear on the member list of more than one of the mentioned

initiatives: Intel (5), Cisco (4), Ericsson, Microsoft, Qualcomm, and LG (3), Bosch (2).

9

Take the Open connectivity foundation, for example, it supports IoTivity [18] and

Alljoyn [19], despite both being frameworks that are addressing device connectivity. It

is easily inferable that tech companies are not sure what standard will prevail and are

not willing to fully commit. Another aspect of the standards competition is that besides

the mentioned initiatives, other traditional standardization entities, such as IEEE, 3GPP

(3rd Generation Partnership Project), among others, are developing standards for IoT.

With so many entities developing competing standards, another question emerges, what

is the longevity of such standards, also, what happens when a standard is established,

and another that is superior is developed. Therefore, expecting to reach interoperability

among devices by enforcing a universal standard is somewhat innocent.

 Connecting to the Internet in IoT

In IoT, most objects are constrained in resources. For this reason, nearly

everything that works on the current Internet requires a lightweight IoT version [20]. A

rapid analysis of the most common wireless methods of accessing the Internet reveals

that the current Internet protocol stack does not take the limitations of IoT into account.

Wi-Fi (IEEE 802.11 a/b/g/n/ad/ac) is one of the most common ways to access the

Internet, and its protocol stack is not suitable for IoT, it does not provide low power

consumption on end-devices, or supports a high number of end-devices. For this reason,

alternatives have been developed and are being used on IoT, such as the Bluetooth 5 and

the IEEE 802.15.4 that is part of both ZigBee and 6LoWPAN (IPv6 over Low Power

Wireless Personal Area Networks) protocol stack. Bluetooth 5 is the latest iteration of

the popular Bluetooth standard. Similar to Bluetooth 4.2, Bluetooth 5 also supports IP

networks [21]. Unfortunately, users rarely explore the IP capabilities provided by

Bluetooth. IEEE 802.15.4 is a standard for Low-Rate Wireless Personal Area Networks

(LR-WPANs) that specifies the physical and MAC layers of the OSI model [21].

6LoWPAN and ZigBee deployments use IEEE 802.15.4. 6LoWPAN is an Internet

Engineering Task Force (IETF) approach that compresses and encapsulates the IPv6

headers and accommodates them on the frame IEEE 802.15.4 [21]. ZigBee was

developed and maintained by the ZigBee Alliance, and it is mostly known for its mesh

topology, but it supports other topologies, such as star and tree [21]. The advantage of

6LoWPAN is the use of the well-known Internet Protocol (IP) and, unlike ZigBee or

traditional Bluetooth, a complex gateway is not needed when communicating with the

10

Internet, which requires further security mechanisms and increased overhead. A ZigBee

gateway is illustrated in Figure 2; a similar concept applies to any technology that does

not support IP natively. Recognizing the importance of IP networks, a modification of

ZigBee, called ZigBee IP, was released. ZigBee IP uses many 6LoWPAN concepts,

especially the header fragmentation and compression scheme [21].

Another wireless method of accessing the Internet is through 3G/4G networks.

Both have the same problems as Wi-Fi. For this reason, wireless long-range network

solutions such as Sigfox, LoRa, and IEEE 802.11 ah (HaLow) were developed [22]. As

the name suggests, they consume less battery and provide broad area coverage. Both

LoRa and Sigfox need a gateway that interfaces with end devices. This gateway

connects to a backhaul that provides a connection to the Internet [23], this is depicted in

Figure 3. One of the differences between LoRa and Sigfox is that Sigfox operates

similarly to a traditional ISP, where the user has to subscribe to the service in order to

use it, while LoRa offers technology that any user can purchase, install the

infrastructure, and use the network at will. The advantage of IEEE 802.11ah over the

other LoRa and Sigfox is that as an IEEE 802.11 standard, it natively supports IP

networks [24]. Another promising method of accessing the Internet through IoT is 5G

technology, expected to be released to the public around 2020 [25]. 5G presents

difference performance requirements for distinct scenarios and IoT is one of them.

Figure 2 – Illustration of the ZigBee architecture connecting to the Internet through a TCP/IP gateway.

11

Figure 3 – Illustration of Sigfox/LoRa overall architecture.

The current Internet architecture uses the Hypertext Transfer Protocol (HTTP)

in the presentation layer (referring to the OSI model), but common HTTP requests

consume too much energy for IoT. For this reason, alternative lightweight protocols that

are more efficient and practical for end-devices have been proposed for IoT [26]. Two

protocols that emerged in this sense, and are being used on IoT are the Constrained

Application Protocol (CoAP) and Message Queing Telemetry Transport (MQTT), both

expecting a TCP/IP stack. CoAP runs over UDP while MQTT runs over TCP [27] [28].

CoAP is based on the REST model, which allows resource-constrained devices to access

resources through REST methods. MQTT relies on the Publish/Subscribe (Pub/Sub)

model; therefore, it needs a message broker. Among other aspects, the broker is

responsible for sending the message to all subscribed clients. For instance, the

Messenger from Facebook uses MQTT. A variation of the MQTT protocol for networks

that are not based on TCP/IP is called MQTT-SN [29]. CoAP generates less overhead

than MQTT for all message sizes when the packet loss is low; when the packet loss is

higher, CoAP produces less overhead only when the message size is small [28]. When

the message is large, the probability that TCP loses the message is smaller than UDP,

which causes MQTT to retransmit the entire message fewer times than CoAP [28].

Another aspect of IoT is data representation. Currently, the most used encoding

technique is JSON, but one of its biggest strengths (easily readable to humans) implies

more computational capacity when encoding or decoding as well as transmitting.

However, JSON is far superior to its competitor XML [30]. In the current Internet, this

inefficiency is worth the advantages, but in IoT every Byte counts. Therefore, binary

encodings such as Apache Thrift and Google’s Protocol buffers are better suited for

most IoT devices [31]. Despite JSON inefficiency in IoT, many devices in IoT

12

environments still use it. However, to maximize efficiency, they should only use JSON

encoding when strictly necessary.

2.1.3 Simplified IoT architecture

In computer science and engineering, an architecture describes the general

organization of a system, abstracting from restraints such as implementation technology

[32]. It goals to understand and describe a system behavior. A significant amount of

architectural proposals for IoT can be found in related literature. To summarize the

different approaches, the most relevant layers that are available in most solutions are

illustrated in Figure 4. They are as follows: i) Users or applications, ii) IoT platform,

and iii) devices and infrastructure.

Users or applications: This upper layer addresses the users and auxiliary

applications such as decision support tools or social media.

IoT platform: Is a software package that integrates devices, networks, and

applications. The platforms hide implementation complexity from the user, because they

support and enable IoT solutions by providing an ecosystem where things are built upon

[33].

Devices and infrastructure: At the low layer, the physical IoT infrastructure is

located. It includes network devices (including “things”), multiple access, and

modulation techniques.

Figure 4 – Simplified IoT layered architecture.

13

2.2. IoT platforms

An IoT platform is a software package that integrates devices, networks, and

applications. These platforms optimize business performance by hiding implementation

complexity from the user, because they support and enable IoT solutions. These

software are called platforms because they provide an ecosystem where everything is

built upon [33]. As a software, platforms possess requirements, software engineering

states that requirements are divided in functional and non-functional [12].

2.2.1 Functional requirements

Functional requirements are functionalities that describe what a system should

be qualified to perform (what should be done) [34]. There are cases where functional

requirements state what systems should not do [12]. Either functional requirements are

met or not, there is no objective way of quantifying them. The functional requirements

of IoT platforms are described as follows.

Resource discovery: If an individual does not know what are his capabilities he

cannot advertise them to the others. The same principle is applied in IoT, where it is

crucial for things to be aware of their abilities and limitations, so they can announce to

peers what resources they offer. Expecting a human to complete this task for every IoT

device manually is not only unrealistic but impractical, so discovery mechanisms need

to scale well. Resource discovery is the process used by a device to search for the desired

resources, where the entire network is probed for services [10].

Resource management: Every application requires QoS (Quality of Service) to

be reliable, and that is only possible through fair resource allocation. Platforms should

be able to estimate device battery-time, current memory usage, and other relevant

internal data to facilitate resource allocation and satisfy application needs. An efficient

resource management can guarantee that a device that is handling many requests or is

low on battery is requested less often if other devices are able to perform the same task.

Data management: Data are critical in every application; It holds a big part of

IoT value, so it should be appropriately handled. In this paragraph, data refers to what

is sensed by the thing, or any other information that is interesting to the application.

Data management consists of acquiring data, storing in a database, and processing

14

through analytics. When data is processed and interpreted in accordance with a context

it is called information.

Event Management: IoT applications can generate a massive number of events.

Event management is an extension of data management. After storing data, other

applications make use of it; meaning that accurate decisions can be made in real-time

with the information provided by the data, and the proper events are generated.

Code Management: Updating every device in person is unpractical, and IoT

will have a plethora of them. Platforms should facilitate updating operations since they

possess a connection to devices.

2.2.2 Non-functional requirements

Non-Functional requirements are certain aspects that a system should ensure, to

guarantee QoS (Quality of Service) [34]. These requirements are described as follows.

Scalability: An IoT platform needs to be scalable, since the things connected to

a network grow exponentially, so will the amount of data. Platforms should provide a

similar QoS as time passes and more devices are added.

Real-time or Timeliness: Most applications will rely on real-time data, so data

must continuously be updated. In computer science, the term real-time means that the

user barely perceives the delay between sending data, and the amount of time the

computer takes to receive and process the data.

Reliability: Is the likelihood that the software will experience no failures in a

specified timeframe. The specified timeframe depends on the scenario. This means that

the timeframe can be the duration of a single task or even the entire software lifecycle.

Availability: Platforms supporting critical IoT applications must be available at

all times. The platform should remain operational when executing tasks, even if it is

experiencing failures. Reliability and availability should work together to ensure some

level of fault tolerance.

Security: One of the most significant concerns in every application is always

security. In IoT, that aspect is even more critical since a compromised object could

perform all sorts of attacks such as DoS (Denial of Service) or even disclose sensitive

information such as user location, regular schedule, or even live video. The implications

of such data being exposed are limitless, and platforms should do their best to protect

user data, while also providing intrusion detection mechanisms.

15

Privacy: A substantial amount of Facebook and Google revenue comes from

collecting user data and selling to advertisers (users consent to this practice in the service

agreement). However, there is no way of being sure what data they collect. Privacy

issues are related to the willing disclosure of data are an enormous concern. This

problem is even more severe when VoiceLabs (devices that are always listening) [35],

such as Amazon Alexa and Google assistant are used. An IoT platform escalates the

risks further with the amount of collected data. A business model that could be popular

in the future is for users to consume cloud middleware systems for free with the tradeoff

of the data being sold to advertisers or other interested parties.

Ease of deployment, maintenance, and use: These platforms will be handled

by users, who might not have technical expertise. The average user should be able to

install, maintain, and use the platform easily. Software that are easy to use are generally

preferred by the public and usability without compromising security will probably be

one of the key aspects of successful IoT solutions.

Interoperability: The platform should be compatible with various devices and

applications with minimal effort from developers. If the Platform supports many

devices, it will gain a boost in popularity and will indirectly turn the solution more

scalable. A way of reaching interoperability is if besides the popular HTTP(S), the

platform also supports common IoT communication protocols such as CoAP and

MQTT.

Spontaneous interaction: New devices will continuously be added to the

network, or even repositioned. These changes in the network will occur at any time.

Platforms should help devices discover and interact each other with minimal human

interference.

Multiplicity: Multiple devices are expected to communicate simultaneously;

when various devices offer the same service, platforms should help other IoT

intervenients decide which one provides the best service. If instead of querying a single

entity, the device merely broadcasts a service solicitation to the entire network, the

device would then have to decide which is the best (in the case that more than one entity

provides the desired service). If a single entity is enquired for the best device for a

service, the decision of the most suitable service is delegated to a “smarter” player. The

problem with querying a single entity is that better devices will be prioritized. Therefore,

better devices will not always be able to provide the best service due to memory

constraints (too many requests being processed), or even constraints from the physical

16

world such as distance. These are issues related to multiplicity [36], and platforms

should take them into account when replying.

Adaptability and Flexibility: The platform should be able to adapt to long-term

changes, as well as be flexible enough for short-term alterations. The platform should

also be viable across multiple scenarios.

2.2.3 IoT platform categories

The best would be for IoT platforms to support all the mentioned requirements.

Instead, most IoT platforms are built to support some of the previous requirements and

fall under three categories that are described as follows i) Device management, ii)

application development, and iii) application enablement. Table 1 displays a list of IoT

platforms in alphabetical order, and it also displays which categories each one targets.

Device management platforms are focused on remote device management and

the optimization of network resources. The definition of device management that is

going to be used in this dissertation is inspired in OMA DM (Open Mobile Alliance

Device Management) specification. According to this standard, device management

consists (but is not restricted) to setting initial configuration (provisioning), changing

parameters or settings (maintenance), delivering updates (upgrading), query device

status, diagnostics, error reporting (reporting), and event processing [37]. These

platforms also focus on connectivity, as well as optimizing the usage of network

resources. They collect the network capabilities and optimize the network resources by

offering tools that facilitate data delivery, device detection, and network diagnostics. If

a specific device in the network is overloaded or is short on battery, the platform should

notice and take proper actions. Plug and play is another concern for this type of platform,

so when new devices enter the network or get repositioned, little configuration by the

user is necessary. It is important to notice that device management usually requires that

additional software is installed on the device. Notice that some software frameworks

that enable D2D connectivity will also be included in this category.

Application development platforms are focused on developing secure

applications that can scale to many users, and deal with the heterogeneity present in IoT

environments. This type of platforms also offers built-in tools to integrate with popular

service providers allowing the developed applications to be compatible with them.

Platforms that merely provide basic SDKs (Software Development Kit) to send/receive

17

data on their platform will not be included in this category. However, software

development frameworks and toolkits specifically for IoT will be included in this group.

Application enablement platforms are focused on enabling and integrating

external applications. They provide means to manage and visualize data, which

accelerates application development and facilitates integration with enterprise systems

such as CRM (Customer Relationship Management) and ERP (Enterprise Resource

Planning). Additionally, these platforms also secure user data and enable information

exchange among various devices/applications. This type of platform is also called IoT

middleware platform, or IoT middleware and is the focus of this dissertation. It is very

common for this kind of platform to also advertise themselves as supporting device

management. However, most do not offer ways of delivering updates. From here on, the

terms middleware, IoT middleware, and IoT middleware platform will be used

interchangeably. The middleware is one of the enabling technologies for IoT [10][9]

Further details regarding IoT middleware platforms can be found sub-section 2.3.

Around 43 middleware platforms were identified in the literature. However, not all of

them are included in Table 1 because they were discontinued a long time ago.

18

Table 1 – Available IoT platforms and corresponding targeted areas.

Name App enablement App Development DM and

Connectivity

Alljoyn (Framework) [38] X

Amazon IoT platform [39] X

Artik Cloud [40] X X

Autodesk Fusion Connect [41] X

Carriots [42] X X

Chorevolution [43][44] X

CloudPlugs [45] X

Devicehive [46] X

EVRYTHNG [47] X

Fiware (Orion+STH) [48][49] X

GroveStreams [50] X

InatelPlat X

Iotivity (Framework) [51] X

Kaa [52] X

Konker [53] X

Linksmart [54] X X

Losant [55] X *** X

M2Mlabs (Framework) [56] X

Microsoft Azure IoT Suite [57] X

Nimbits [58] X

Nitrogen [59] X

OpenIoT [60] X X

Sitewhere [61] X

Stack4Things (Framework) [62][63] X

Tago [64] X

Telit IoT platform [65] X X

Temboo (Toolkit) [66] X

ThingSpeak [67] X

Thingworx IoT platform [68] X

Ubidots [69] X

WSO2 IoT server [70] X

Webinos [71] X X

Xively [72] X X

*** – Although the development for Losant is for the Losant platform, the tools are very

advanced.

19

2.3. IoT middleware platforms

As the name suggests, middleware is a software that is located in the middle

(between two things). The primary goal of a middleware is bringing different systems

together so they can interact with each other [73]. The role of middleware is not only to

enable communication but to facilitate it. No middleware can be applied to every

scenario, so they are generally built for specific or set of scenarios. In the literature, IoT

middleware solutions are sometimes referred to as IoT platforms or IoT middleware

platforms because generally, the middleware is a platform, but it is not the only type of

IoT platform.

In IoT, middleware acts as a translator. To illustrate it, imagine a scenario where

three people from different nationalities debate. If they do not have a common language

among them (the standardization option), they would need a translator mediating the

conversation. Now imagine that the three people are different applications (APPs). APPs

communicate through APIs (the language), each APP has its own API. Without a

middleware (the translator) each APP must understand every other API. This simple

idea allows users to focus on the problem and is illustrated in Figure 5, because instead

of knowing how each application works, users manipulate data from one application

(the middleware).

Figure 5 – Illustration of the communication (a) without middleware and (b) with middleware.

20

There are many IoT middleware solutions available in the literature as well as

the market. Some of these solutions are open-source and free to download, trial, like

most open-source, the code can be altered at will. Other solutions are closed-source, and

are only available in the cloud in the form of PaaS (Platform as a Service). The

advantage of PaaS solutions is that they are located in the cloud, and authenticated users

can access the data located on the server from anywhere around the globe without having

to worry about deploying or managing the infrastructure [74]. Both open-source and

closed-source middleware solutions from Table 1 are described below.

Amazon IoT platform is an IoT middleware platform developed by Amazon.

It supports MQTT, REST, and Websockets communications with its server. One of the

biggest advantages of Amazon IoT is that it easily allows interaction with other Amazon

services such as S3, Machine learning, CloudWatch, and many more. Their business

model is PaaS.

Artik Cloud is a platform developed by Samsung. It provides application

enablement as well as device management. It supports MQTT, REST, Websockets, and

CoAP communications with its server. One of the advantages of Artik Cloud is that

popular IoT apps and devices such as Amazon echo and Google Home can be easily

integrated with it. Their business model is PaaS.

Autodesk Fusion Connect is an IoT middleware platform developed by

Autodesk. It is marketed as supporting all M2M protocols and vendor specific

technology from over 50 devices. One of its biggest strength is the fact that it provides

comprehensive analytics tools. Their business model is PaaS.

Carriots is a platform developed by Carriots. It provides application enablement

as well as device management. It supports MQTT and REST communications with its

server. Their business model is PaaS and it can integrate with external systems such as

Dropbox.

Cloudplugs is an IoT middleware platform developed by Cloudplugs. It

supports MQTT, REST, and Websockets communications with its server. Their

business model is PaaS.

Devicehive is an open-source middleware platform created by DataArt and is

distributed under Apache license 2.0. It supports MQTT, REST, and Websockets

communications with its server. Although it is open-source, an online version is

available as PaaS where users can trial for free, or expand to a paid version. To

successfully deploy the solution, users must install PostgreSQL, Apache Kafka, and

21

Java 8 or above. The downside of Devicehive (when deploying a private server) is that

measurement data from devices is cached, meaning that if the server is restarted, or runs

out of memory all data are lost. If the user desires this feature, it is necessary to create

an additional connector or modify backend logic. However, Devicehive plans to support

this feature in next releases. More information regarding Devicehive can be found in

their official website [46].

EVRYTHNG is an IoT middleware platform developed by EVRYTHNG. It

supports MQTT, REST, Websockets, and CoAP communications with its server. An

interesting feature is that it allows integration with external Business Intelligence

systems. Their business model is PaaS.

Fiware (Orion+STH): It is common for Fiware to be referred as a middleware

platform. In reality, Orion Context broker is the middleware. Orion is an open-source

middleware platform created and maintained by Fiware and is licensed under Affero

General Public Licence (GPL) version 3. It is a publish/subscribe implementation of the

NGSI-9 and NGSI-10 Open RESTful API specifications. It only supports REST

communications with its server. To successfully deploy the solution, users must have

MongoDB installed. The downside of Orion (when deploying a private server) is that

its specification states that only the last collected value is stored in the database, meaning

that chronological data consultation is not possible. Recognizing the limitations of

Orion, Cygnus and STH (Short Time Historic) were developed by Fiware. They both

subscribe to Orion notifications, and when values are changed, they are persisted to the

database. The main difference between Cygnus and STH is that Cygnus only stores data,

and no consultation is possible, while STH allows both. Fiware officially supports both

Cygnus and STH. The REST API version that was used in the experiments is v1, instead

of v2 Due to incompatibility with STH. In theory, v1 is less efficient than v2. More

information regarding Orion and STH can be found in their official documentation

[48][49].

InatelPlat is a middleware platform created in August 2017, at INATEL’s

(Instituto Nacional de Telecomunicações) ICC (INATEL Competence Center). The goal

is to provide PaaS for interested buyers. Currently, it only supports REST

communications with its server, but the intention is to support other protocols by early

2018. No further information regarding implementation was provided because INATEL

desires to keep that information private. The name InatelPlat is temporary, and the final

version will have a different name.

22

Kaa is an open-source middleware platform created and maintained by KaaIoT

and is licensed under Apache license 2.0. Although it is an open-source, users can

expand to a paid version by contacting the KaaIoT [75]. It supports REST

communications with its server, and SDKs can be deployed to devices. To successfully

deploy the solution, users must have Oracle Java SDK, either MariaDB or PostgreSQL,

MongoDB or Cassandra, and Zookeeper. The downside of Kaa (when deploying a

private server) is that it is not possible to inquiry the stored data from the server through

the REST API, meaning that the user has to develop another application for this feature.

To those who are interested, it is possible to build a REST API that returns data from a

MongoDB database using free tools such as Spring tool suite [76]. More information

regarding Kaa can be found in their official website [52].

Konker is an open-source middleware platform created and maintained by the

Brazilian KonkerLabs. It is licensed under Apache license 2.0. Although it is an open-

source, an online version is available as PaaS where users can trial for free, or expand

to a paid version. It supports REST and MQTT communications with its server. To

successfully deploy the solution, users must have Java SDK, MongoDB, Cassandra, an

application server that supports servlets. More information regarding Konker can be

found in their official website [53].

Linksmart, formerly known as Hydra [77], is a complete IoT platform that

supports device management, as well as application enablement. The app enablement

module is called Linksmart HDS (Historical Datastore). HDS is an open-source

middleware platform that is licensed under Apache license 2.0. It supports REST

communications with its server, and data visualization is made through grafana. To

successfully deploy the solution, users must have either influxDB or MongoDB

installed. Regarding the platforms that were experimented, it is the only one that uses

SenML [78] instead of JSON More information regarding Linksmart can be found in

their official documentation [54].

Losant is a platform developed by Losant. It provides application enablement as

well as device management. It supports MQTT and REST communications with its

server. Although the application development tools offered by them are to communicate

with their own middleware, the tools are very advanced. One of its biggest advantages

is that besides analytics it can also be used on the edge of IoT devices. Their business

model is PaaS.

23

Microsoft Azure Iot Suite is an IoT middleware platform developed by

Microsoft. It supports MQTT, AMQP (Advanced Message Queuing Protocol), and

REST communications with its server. One of the biggest advantages of Azure IoT suite

is that it easily allows interaction with other Azure services such as machine learning,

Data warehousing, and much more. Their business model is PaaS.

Nitrogen is an open-source middleware platform. Some of its modules are

licensed under MIT license, while others are under the Apache license 2.0. To

successfully deploy the solution, users must have Nodejs installed. The disadvantage is

that only Nitrogen enabled devices (devices that run Nitrogen software) can

communicate with the server. The project has received no updates to its Github

repository since March 2015, and the official website domain (nitrogen.io) is for sale

[79]. Which leads the dissertation to conclude that the project was terminated. More

information regarding Nitrogen can be found in their official documentation [59].

Nimbits is an open-source middleware platform created and maintained by

Nimbits; it is licensed under Apache license 2.0. It supports MQTT and REST

communications with its server. Although it is an open-source, an online version is

available as PaaS where users can trial for free. To successfully deploy the solution,

users must have Java, Redis, a java server application, and Mosquitto MQTT installed.

The problem with Nimbits is that it is going through a restructure and all documentation

related to usage was erased from the official documentation, and the public cloud is

down with no estimated date of return.

OpenIoT is an open-source platform that supports device management, as well

as application enablement. Created and maintained by the OpenIoT consortium, it is

licensed under Apache license 2.0. It supports REST and GSN (Global Sensor Network)

communications with its server. To successfully deploy the solution, users must have

Java, Maven, JBoss, and Local Virtuoso installed. Although it is a fascinating project,

it has received no updates to its Github repository since November 2015. More

information regarding OpenIoT can be found on their official documentation [60].

24

Sitewhere is an open-source middleware platform created and maintained by

Sitewhere and is licensed under CPAL-1.0 (Common Public Attribution License

Version 1.0). Although it is open-source, users can expand to a paid version by

contacting Sitewhere. It supports MQTT, AMQP, and REST communications with its

server. To successfully deploy the solution, users must have Java, MongoDB, HiveMQ,

and Apache Tomcat. More information regarding Sitewhere can be found in their

official website [61].

Tago is an IoT middleware platform developed by Tago. It supports MQTT and

REST communications with its server. Their business model is PaaS.

Telit IoT platform is an IoT platform developed by Telit. It supports MQTT

and REST communications with its server. It provides application enablement as well

as device management. One of its biggest advantages is that besides analytics it can also

be used on the edge of IoT devices.

ThingSpeak is an IoT middleware developed by ThingSpeak. It supports REST

communications with its server. The differential of this platform is that it offers

MATLAB analytics. ThingSpeak started as an open-source project, but currently offers

its service in the form of PaaS, although the old version of the server is still up in the

Github repository.

Thingworx IoT platform is an IoT platform developed by PTC. It supports

REST communications with its server, and additional connectors are available in its

marketplace. It provides application enablement as well as device management. One of

its biggest advantages is that besides analytics it can also be used on the edge of IoT

devices.

Ubidots is an IoT middleware platform developed by Ubidots. It supports

MQTT and REST communications with its server. Their business model is PaaS.

Xively is an IoT platform developed by LogMeIn. It provides application

enablement as well as device management. Xively supports MQTT and REST

communications with its server. One of its biggest advantages is that besides analytics

it can be easily integrated with Amazon web services, Salesforce Device Bridge, and

custom integrations with external CRM and ERP tools are also possible. Their business

model is PaaS.

25

Webinos is an open-source service platform that supports device management,

as well as application enablement. It was developed as part of the EU FP7 ICT

Programme and is licensed under Apache license 2.0. Webinos uses the concept of

Personal Zones, which allows communication between services and devices. Personal

zones are divided into two parts: i) PZH (Personal Zone Hub) and ii) PZP (Personal

Zone Proxy). A PZH possesses a public IP address and runs in the cloud [80]. The PZP

is a device that is able to run Webinos services. To successfully deploy a personal zone,

users must have Nodejs installed. The disadvantage is that only Webinos enabled

devices (devices that run Webinos software) can communicate with the server, besides

that, it is not suitable for real systems, because many critical features are still

unimplemented. It has received no updates to its Github repository pzp module since

February 2014, and pzh since March 2015. More information regarding Webinos can be

found in their official website [71].

2.4. Middleware reference architecture modules

When IoT is publicized, beautiful scenarios are presented where devices learn

from the user habits and react to them, improving quality of life and experience. All the

scenarios that are presented finish with a sentence similar to this one: “all of this with

minimal human intervention.” These scenarios are only possible because of middleware

platforms that integrate data from all the devices and acts upon it. For this reason,

Middleware are present in most IoT scenarios. Collecting data and react accordingly is

a crucial feature in IoT because most devices are small, and resource constrained to

make complex decisions. Therefore, the middleware platforms are responsible for part

of the intelligence in IoT. To fulfill their goals, the modules of an IoT middleware

platform architecture should reflect IoT requirements as follows: i) interoperability, ii)

persistence and analytics, iii) context, iv) resource and event, v) security, and vi)

Graphical User Interface (GUI). The modules of a considered ideal IoT middleware are

presented in Figure 6 and described as follows.

26

Interoperability module: The IoT is a heterogeneous environment, and the

middleware platform is the integrator. Therefore, it should provide an API (Application

Programming Interface), that allows software to expose functionalities to other

applications and things without sharing actual code [7]. API requests made by

things/applications can be performed through any protocol, so the middleware should at

least support the most popular IoT application protocols, such as CoAP, MQTT, and

HTTP(S) [7]. The module should also support standard data representation methods,

like XML (eXtensible Markup Language) and JSON (JavaScript Object Notation), as

well as binary encodings (Apache thrift, Google protocol buffer), another data

representation that is emerging for IoT is SenML (Sensor Markup Language) [78]. To

further extend interoperability, the middleware should provide basic SDKs, so the code

can quickly be deployed to devices, and they can send/receive data to/from the

middleware platform. SDKs can be vital, because adding new devices to the middleware

is relatively easy, but is not scalable in the sense that it is tedious for the user to add

various devices at once. Then, adding new devices should be further simplified (without

compromising security). This module is intended for future expansions, and is ideal for

new and unforeseen technologies to be integrated here.

Persistence and Analytics module: IoT produces a massive amount of data,

which needs to be quickly and continuously stored for chronological consultation and

further processing [81]. IoT Middleware should use NoSQL databases to store data since

they are generally faster than SQL databases because their data model is simpler [82].

It is commonly said that in IoT, Things learn from user habits. In practice, devices are

constrained in resources, and the middleware is the one who learns from collected data.

Therefore, middleware least it should provide basic analytics, such as simple graphs,

averages, or min/max values [8]. However, the best is further data processing through

data warehousing, big data, or even feeding these data to deep/machine learning

algorithms because the collected data are highly valuable, especially after being

processed [3].

Context module: In a communication, context provides meaning to a

conversation. IoT environments are expected to adapt to surroundings and context will

play a significant role in this regard [13]. A system is context-aware if it is capable of

providing relevant information or services according to the task demanded by the user

[83]. Regarding user interaction, systems are classified into three levels of context-

awareness [83]: i) Personalization, ii) Passive, and iii) Active. Context-awareness

27

personalization is when the user states to the system precisely what he wants, and the

system merely follows what was programmed [83] (e.g., user programs the lights to go

on when he enters the room). Passive context-awareness is when the system monitors

the environment and suggests actions according to the monitored data [83] (e.g., a user

walks into a room, and the system asks if it should turn on the lights). Active context-

awareness is when the system monitors the environment and acts on the changes to the

environment autonomously [83] (e.g., a user walks into a room, and the system

autonomously identifies if the user can navigate through the room and turns on the light

with the right degree of luminosity). Context-awareness affects the ability to adapt to

new circumstances or environments, and is deeply connected to event

detection/management. For context-awareness to be achieved, it has to be modeled. In

recent years the ontology-based modeling has become mainstream, spawning different

standards. A popular standard is OWL (Web Ontology language) that is backed by W3C

(World Wide Web Consortium). More information regarding other context modeling

techniques, as well as context in general can be found in [83]. Semantic interpretation

and ontologies are expected in this module because people communicate semantically

and the same is expected when humans interact with machines in IoT environments. For

the IoT that is envisioned the best is artificial intelligence in this module (one of the

most challenging fields in this technology), but the middleware platform can use

external APIs to achieve this goal. Currently, some middleware proposals such as

Linksmart and OpenIoT rely on ontologies to reach semantic interoperability between

the sensed data [84].

Resource and Event module: For devices to be efficient in their actions, they

must know what they can perform and their internal operation status (battery level,

internal/external temperature, current memory usage), so they can advertise their

resources and discover resources from others. Multiple devices are expected to

communicate with each other simultaneously; they can even offer the same service, and

better devices are supposed to be requested more often than the others. This means that

they will not always be able to provide the best service, due to memory constraints (too

many requests being processed), or even constraints from the physical world such as

distance. These issues are a concern related to the multiplicity of actions and the

limitations of the tiny device [36]. Middleware platforms can minimize these problems

by managing and optimizing these interactions. When connecting for the first time to a

middleware platform, devices and external applications should announce their

28

capabilities through some sort of text message (e.g., in JSON). Then, the context module

semantically interprets the capabilities, and when a device or application needs an

individual service, it can query the middleware for nearby devices that are able to fulfill

the task. The middleware understands all capabilities provided by the environment and

can generate the proper events. Middleware should also facilitate events update through

devices [7], as it is not expected a person can manually manage every single device in

large environments such as smart cities.

Graphical User Interface: A graphical user interface (GUI) is a must for every

modern software, as it makes applications user-friendly. In IoT middleware, the GUI is

often referred as Dashboard, because many data will be exchanged, and dashboards

present data in a way that is easy to read. Despite GUIs being so important, it is common

for open-source middleware platforms do not possess a native GUI, relying instead on

integrations with third-party applications such as Freeboard [85] or Grafana [86] to

provide dashboards. These third-party applications can be deployed on private

instances, are very powerful and relatively easy to use, as the hardest part is having to

configure data-sources when using them.

Security module: IoT will not become popular without plug-and-play. This

means that middleware should be flexible enough for the average user to handle.

Unfortunately, ease of use (usability) is difficult to achieve with the level of security

needed by middleware. If the data could be tampered or retrieved by a malicious user or

application, the threats would be limitless. IoT devices are not known for their security,

middleware platforms should not follow the same trend because they are the brain of

IoT. The amount and value of the collected data are significant and must be secure, but

the solution is not simple for any IoT scenario including middleware, because devices

are very constrained in resources. Encryption, for example, is costly (regarding

processing), so lightweight encryption tools or algorithms must be used for this goal,

along with a lightweight cryptographic protocol [87]. Public keys require that

certificates are updated when they expire, and propagating these updates for every

device is not a simple task. Both cryptography and public keys are basic security features

that are common on the current Internet, and their limitations in IoT display the problem

in hand, so every security aspect that is efficient and can be included exclusively on a

powerful server is welcome. With that in mind, the dissertation proposes four essential

security aspects for middleware security in IoT. They are: i) Per device authentication,

ii) The credentials to consult and publish data should be different, iii) devices should

29

access other device data using their own credentials, and iv) middleware should know

device habits and store their MAC and IP. More details regarding the proposed security

measures, and the reasons behind them can be found in Sub-section 3.2.1. “With great

power comes great responsibility,” the iconic quote from the famous movie Spider-Man

that defines middleware platforms, as they should be updated using the state-of-the-art

security mechanisms.

Figure 6 – Definition of a model for IoT platform modules.

An IoT environment is characterized by its heterogeneity considering different

technologies and data collected will be used across many IoT verticals. However, some

scenarios are broader than others. Small solutions like weather stations will just consider

data collection and storage, as most of their data are predictable and repetitive; then, it

will most likely perform basic analytics and expose data for external consultation. In big

verticals, such as smart cities, that can include energy management, smart parking, smart

transportation, mobility, etc., data are unpredictable. The middleware platform should

be equipped with AI mechanisms to analyze broader scenarios. In practice, this means

that not all possible scenarios require all the presented modules since in small scenarios

such as a weather station, a simple middleware platform that facilitates data consultation

and storage might suffice.

30

31

Chapter 3: Performance Metrics for IoT Middleware

The first step towards selecting an IoT middleware platform is defining the scenario

since a considerable part of the available middleware platforms are built for specific

scenarios. The same principle applies when weighting performance metrics, some

scenarios are more sensitive to certain parameters than others. Performance metrics may

be both qualitative and quantitative. Qualitative metrics are metrics that are difficult to

translate into numbers because the way they are perceived depends on the person that is

analyzing (e.g., beauty). Quantitative metrics are easily converted into numbers and can

be quantified. Individuals can disagree on who is more beautiful (qualitative), but if one

is taller than the other, or possesses longer hair, it is undeniable (quantitative). There are

many available IoT middleware platforms; therefore, qualitative metrics are used to

filter the middleware that will be present in the quantitative comparison, and quantitative

to objectively compare and even rank the tools under study. In both qualitative and

quantitative metrics, this dissertation will also display honorable mentions, which are

metrics, that although exceptional, do not deserve top honors. Currently, no performance

metrics, or even guidelines to objectively compare IoT middleware are defined in the

literature. Table xxx summarizes the proposed qualitative metrics that are described

below.

3.1. Qualitative (filter) metrics

IoT middleware platforms are so similar in features that the traditional

qualitative comparison where a table containing a list of features (reflecting their

requirements, or detailing architectural aspects), does not help when deciding which

middleware to use. Imagine for example that a solution is marked as not scalable, the

reasoning behind such statement should be detailed to its fullest. The qualitative metrics

in this dissertation are proposed with the goal of reducing subjectivity, as well as aid

users that are trying to select an IoT middleware for a given solution.

32

3.1.1 Security

Security is an essential aspect of any system, and it seems IoT developers are

relegating it to second plan, so products can be developed faster, and the exploits can be

later resolved. It is this dissertation view that IoT middleware should not follow the

same path, and should ensure data security. For this reason, four fundamental aspects

are proposed in this dissertation with the intention of increasing security in IoT

middleware, and are based on the assumption that device credentials were somehow

compromised. They are the following: a) Per device authentication, b) Devices should

use different credentials to publish and consult data from the middleware, c) Devices

should access other device data using their own credentials, d) Middleware should know

device habits and store their MAC (medium access control) and IP (Internet protocol)

addresses.

a) Per device authentication is crucial for the safety of middleware data.

Every device should have its individual credentials when accessing the middleware

platform. If credentials get compromised, and the user notices, the threat is eliminated

by revoking or updating the device credentials. However, if all devices share the same

authentication, besides revoking or updating the credentials, the user also has to insert

them into every other device. Some middleware platforms already follow this guidance.

b) Devices should use different credentials to publish and consult data

from the middleware. Some users already comply with the guidance that every

device should have its own authentication. However, the implementation is limited, as

the same credentials to publish device data are the same that are used to consult. This

means that an organization cannot safely expose its device data to external users,

without risking that data is tampered. For this reason, authentication per device is not

enough and different credentials should be used to publish and retrieve data. To the

best of author’s knowledge, none of the existing middleware platforms includes this

security measure.

c) Devices should access other device data using their own credentials. The

former scenario is an excellent example of a weather station, where device data can be

retrieved by any interested party, but makes it difficult to discover which device

credentials were compromised. Imagine that one day a close friend visits the user house

and says he hacked one of the devices and now he always knows what is in the

33

refrigerator. The solution would be to change the consultation credentials of the

refrigerator and propagate them to every device that needs it (and that is the problem).

A few days later the same friend is back, and compliments for changing the password

but says he can consult it again. The friend also says that changing the refrigerator

password is pointless, because he hacked another device to get the password. The cycle

would go infinitely, because the user cannot determine which device was breached.

However, if it is possible for devices to access other device data using their own

credentials, by checking the middleware logs, one can determine which device

credential was used from an external source and the user can take proper actions. When

configuring devices, users should be able to determine what other devices or pre-defined

group of devices have access to consulting rights. Also, some devices that simply sensor

data and never retrieve it should not have rights to either consult other devices, or its

own data. To the best of authors’ knowledge, none of the existing middleware platforms

deploy this security measure.

d) Middleware should know device habits and store their MAC and IP

address. All past scenarios assume that the user notices credential theft, but in real life

it is hard to notice such breaches, especially if the middleware does not comprehend the

devices habits. For this reason, middleware should know device habits and store their

MAC and IP addresses. If the middleware notices that a device is consulting or

publishing in different intervals than it regularly does, or is consulting devices that it

usually does not, it is an indicator that the device was compromised, and the user should

be alerted of the anomaly to take proper actions. However, if the attacker knows this

security feature, he can just disable the original device and keeps sending tampered data

from any part of the globe. The middleware platform can counter this if it can extract

the MAC and IP addresses directly from the HTTP header, and alert the user. In the

Internet, IP changes, so the middleware has to detect if the device IP has changed in a

reasonable range. The single scenario where the credential theft is not detected with this

security features is if the attacker manages to spoof the device regular IP address, clone

the MAC address, and keeps the device transmission habits. To the best of authors’

knowledge, none of the existing middleware platforms implements this security

measure.

34

3.1.2 Supported application protocols

To maximize compatibility with devices, the middleware platform should

support a plethora of application protocols, as it ensures that a vast product range is

compatible with the middleware platform. However, the mandatory should be the

HTTP(S) (HyperText Transfer Protocol), as the Internet application layer is based on it.

Other standard IoT protocols are MQTT (Message Queue Telemetry Transport) and

CoAP (Constrained Application Protocol). Here, supported protocols refers to the

protocols that can be used to communicate with the IoT middleware platform (i.e.,

application layer).

3.1.3 Provided Standard Development Kits

An SDK is a set of development tools written in a programming language, which

allows programmers to create applications for a specific system (the system could be an

application, platform, operating system, embedded system, and more). SDKs that are

offered by middleware platforms offer libraries and methods, so devices can interface

with the middleware API. Most IoT devices are constrained in resources, SDKs provide

an easy and quick way to deploy code into devices so that they can communicate with

the middleware platform. Usually, one programming language is enough, but “the more,

the merrier”.

3.1.4 Number of updates

Using discontinued software is a challenging and costly operation, and it is not

unusual for open-source solutions to be discontinued. Also, it is not uncommon for paid

solutions to terminate services due to financial reasons. In these cases, the only

alternative is to backup data and migrate to another service provider, or hire specialized

staff to maintain the middleware (in the case of a local instance). Observing the number

of updates per year, users can have an indicative if the software is being maintained. It

is assumed in this paper that, if a middleware platform is updated, at least, once every 2

months (in a year) it is a reasonable number. In the case of open-source solutions, the

number of updates can refer to the number of releases located in the respective project

Github repository. Some projects have many releases in a single day, so only releases

35

with a date spacing of a reasonable amount of days (further on 10 days is used later on)

among them should be counted. In the case of middleware platforms that are only

available as a service in the cloud, this resource is not available and observing the

changelog is a valid alternative.

3.1.5 Honorable mentions

Popularity: The idea of popularity is somewhat abstract, as it is nothing more

than attempting to measure how widespread, known, or accepted a particular topic/thing

is. To measure popularity, a poll is generally started, where participants are given

specific choices (this is very common in political campaigns). Since it is harder to

conduct a scientific poll regarding most research topic, a possible solution would be to

check the Google PageRank of each middleware platform and compare (because Google

is the most popular search engine). However, since 2016 the Google PageRank

information is no longer public [88]. The next best option to Google PageRank are other

SEO (Search Engine Optimization) tools such as MOZ [89] and Alexa Page Rank [90].

It is essential to keep in mind that even with an accurate PageRank, some middleware

platforms do not have a website dedicated exclusively to them. So, if a corporation

develops a middleware platform and places related documentation in a subdomain of

the root site, the PageRank is for the root site. An alternative would be to perform a

manual Google search using the name of each middleware platform and manually check

if the first results are relevant (according to [91], 91% of users do not go beyond the first

three results). When performing a manual Google search, one must have in mind that

Google considers the user location and previous browser history when returning results.

Support tiers: When organizations adopt a software, they also hire a specialized

workforce to deal with possible problems that occur during the software lifecycle.

Although the workforce is qualified, some issues require external support from

developers, making support a big issue, and some information is too sensitive and cannot

be exposed in a public forum. For this reason, direct support is interesting for bigger

organizations, and open-source solutions without a “freemium” support option may not

suffice.

Mobile App: In all the scenarios, a mobile App for data visualization, and

interaction with devices is a good additive. Nevertheless, in some situations, it is

36

mandatory. Taking a smart house for example, turning on a computer to consult

temperature in a room is not convenient.

Spam and unsolved issues: Everyone hates spam, so if there are lots of

undeleted spam in forums, it is an indicator that moderators probably do not visit the

forums regularly. The same is valid if there are many unsolved issues. Both are

indicators that the project is dying.

Documentation quality: It is hard to ensure that documentation is good or bad

without actually trying to follow the steps. However, if a documentation provides video,

images, and examples in their tutorials, it is a good indicator. Also, if it is versioned

(every version of the software has its documentation), is an indicator of good document

organization.

Table 2 – Proposed qualitative metrics for IoT Middleware evaluation

Qualitative metrics Brief description

Per device authentication SF Device should have individual credentials

Different credentials to publish and

consult data from the middleware SF

This feature allows organizations to publicly expose

device data without risking that such data is tampered with

Devices should access other device

data using their own credentials SF

It is hard to know which device was compromised without

this security feature

Middleware should know device

habits and store their MAC and IP

address SF

Detecting a compromised device is difficult, and if a

device is not doing what it should, the user should be

alerted

Number of Standard Development

Kits (SDKs)

SDKs provide an easy and quick way to deploy code into

devices so that they can communicate with the middleware

platform

Supported application protocols A middleware can boost interoperability by supporting a

multitude of application to communicate with it. The most

common are HTTP(S), MQTT, and CoAP

Number of updates Discontinued software are challenging and costly. It is not

unusual for open-source solutions to be discontinued

Popularity HM How widespread, known, or accepted a topic is

Support tiers HM Some issues require external support from developers. A

“freemium” option is necessary for some organizations

Mobile app HM Mobile apps are mandatory in some scenarios. In others,

they are simply a good additive

SF – Security feature.

HM – Honorable mention.

37

3.2. Quantitative metrics

A fair comparison among different solutions implies that the conditions are the

same (for all the solutions) across all considered aspects. For software, this means that

the host machine will have the same available resources (memory, processing power,

disk space, etc.). This pre-condition turns the comparison between solutions that are

only available in the cloud, and local instances very complicated because it is not

possible to determine what resources are allocated to the cloud instance. In practice, this

means that with more resources, the local instance can perform better in comparison

with fewer resources. Quantitative comparisons are easily translated into numbers and

graphs. The quantitative metrics proposed in this dissertation are as follows: i) packet

size, ii) error percentage, iii) variation of response times, and iv) honorable mentions.

3.2.1 Packet size

Most of the energy consumption in devices, is due to communication. Therefore,

by knowing the packet size that is necessary to communicate, devices can better manage

critical resources such as battery level, and in advanced cases, they can even plan in

what intervals to transmit. When analyzing packet size, it is important to remember that

REST communications generally end with a response message (response code), so the

response message should also be accounted. Depending on the scenario, the packet size

can even aid in load balancing. Imagine if the devices use IEEE 802.15.4, which

supports transfer rates between 20 and 250 Kbps [21] (take the higher limit into

account). If the device needs 1000 Bytes (8000 Bits) to send data, the maximum number

of devices that can be attached to a single gateway is 31. This is assuming that the

devices are directly connected to the gateway and that the number of received Bytes (to

confirm that data were successfully transferred) is less or equal than the number of sent

Bytes.

3.2.2 Error percentage

Before a middleware is deployed in a real-life scenario, it is crucial to verify that

it can deal with the incoming load, without experimenting errors. This verification is

38

vital for IoT solutions because a plethora of connected devices are expected in IoT, and

the middleware will eventually handle a high amount of data. A viability criterion,

stating the maximum tolerated error percentage due to the server should be established

according to the proposed scenario.

3.2.3 Variation of response times

Response time refers to the amount of time that a software needs to process

information. Response time can be critical depending on the scenario. Therefore,

knowing the response time of the middleware is crucial, especially in high load

scenarios, where a significant amount of data is sent to a server. This experiment can

also be performed in a wired LAN if the point is to evaluate whether the application can

handle high load or not. In this case, response time can be the round-trip time (RTT).

3.2.4 Honorable mentions

Price: Is always a deciding factor for stakeholders. It should always be

considered when evaluating paid, and even free solutions (free solutions still have

maintenance costs). The current business model for solutions that offer PaaS (Platform

as a Service) consists on charging monthly or yearly per number of requests, analysis,

stored records, or sent e-mails. A careful study on the solution should be conducted in

accordance with the scenario to make sure the quality-price ratio is accordingly satisfied.

Timeliness performance: Middleware solutions should assure that its

performance is not impacted as the volume of stored data grows, or when the solution

is running for an extended period of time. In theory, unless the developers make serious

programming mistakes, the performance is not impacted as time passes. However, this

is still a compelling aspect to verify. It is the old saying “rather safe than sorry”.

DoS and DDoS prevention: A DoS (Denial of Service) attack, unlike regular

threats, does not consist on planting malware in the intended machine. A DDoS

(Distributed DoS) means that multiple attackers (multiple machines) target a victim.

There is no clear solution for DDoS attacks, but DoS attacks are relatively easy to deal

with, if the server in which the middleware is hosted was configured correctly. Properly

configuring the server is a recommendation that is valid for every Web application. This

39

security tip is valid not only for DoS attacks but also for other common Web attacks.

When configuring a middleware server (and every Web application), users should then

test the server against some free DoS tools to make sure that the server is secure. With

a properly configured server it would be interesting to verify at which point the server

starts identifying legitimate requests as DoS attacks and vice-versa, or even if it can

identify them at all. A good place to find free DoS tools is Sourceforge [38], but one

should be aware that some may contain malware.

Table 3 – Proposed quantitative metrics for IoT Middleware evaluation

Quantitative metrics Brief description

Packet size Most of the energy consumption in devices is due to communication.

Knowing help estimate the number of devices per gateway

Error percentage It is crucial to verify that the server can deal with the incoming load

without experimenting errors

Variation of response

times

knowing the response time of the middleware is crucial, especially in

high load scenarios

Price HM is always a deciding factor for stakeholders and should always be

evaluated because software has maintenance costs (even free software)

Timeliness performance

HM

In theory, unless the developers make serious programming mistakes, the

performance is not impacted as time passes

DoS and DDoS

prevention HM

There is no clear solution for DDoS attacks, but DoS attacks are

relatively easy to deal with, if the server in which the middleware is

hosted was configured correctly. Properly configuring the server is a

recommendation that is valid for every Web application. Verifying if the

server interprets legitimate requests as DoS attacks and vice-versa

HM – Honorable mention.

40

41

Chapter 4: Performance evaluation of IoT middleware

4.1. Experimentation Scenario

The scenario that is described in this dissertation is similar to the one that is

present at Inatel Smart Campus Project, where devices exchange information and send

data to a middleware. Data can later be accessed by external users or applications (from

any place around the globe). For this reason, it is essential that server continuously stores

data that can be retrieved at any-time and any-where with proper credentials. At the

beginning of the project, the Inatel Smart Campus used a proprietary middleware

solution that was later discontinued by the developers. Maintaining the software started

being an issue; for this reason, it was decided to create a middleware solution that could

be available to others in the form of PaaS. An advantage of PaaS solutions comes from

the fact that they are located in the cloud and authenticated users can access data located

on the server from anywhere from the Internet, without having worries about deploying

or managing the infrastructure [74]. The number of updates received in the current year

is an important deciding factor for this scenario since it forced Inatel to develop its own

solution. For the moment, the campus does not desire that only devices running specific

software are able to communicate with the middleware, and established that primary

method of communication with the middleware platform use REST interfaces. When

sending data to the middleware, most devices on the campus send 15 variables, so this

will be prioritized.

The middleware platforms that are evaluated in this chapter are open-source, the

only exception is Inatel solution that was offered for free to be installed and evaluated.

The first step of the performance evaluation study will consider a qualitative comparison

among the available solutions in order to filter which middleware platforms are useful

to the chosen scenario. The qualitative evaluation will be followed by a quantitative

comparison study to objectively evaluate the solutions. Middleware that only offer the

solution in the form of PaaS (Platform as a Service) were not included in either the study

because a fair quantitative comparison is impossible between a local solution and a

cloud instance since it is impossible to determine what resources are dedicated to the

cloud instance.

42

4.2. Performance evaluation considering qualitative metrics

Considering the Inatel Smart Campus scenario, the most important aspects of the

qualitative comparison displayed in Table III are the following: permanent data storage

(the ones that do not offer this feature are identified by 6), a REST interface to retrieve

data, the number of releases in the last year, and no additional software is mandatory for

devices to communicate with the server (the ones that do not possess this feature are

signaled with 7). Regarding the security features described in Section 3.1, only

authentication per device is implemented (and only in some middleware). To the best of

authors’ knowledge, even solutions that are available in the cloud in the form of PaaS

do not implement the other suggested security features. Authentication per device will

be designated as security feature identified by a), different passwords to publish and

consult data is mentioned to b), specific device restrictions is represented by c), and

MAC and IP addresses storage are noted by d). In this section, ten (10) open-source, as

well as a proprietary middleware solution developed by Inatel are studied among 43

identified in the literature. Table 4 displays a qualitative comparison between the

middleware, as well as the versions of the software that were compared.

Table 4 – Qualitative comparison considering Devicehive, Orion+STH, Kaa, Konker, Linksmart

HDS, Nimbits, Nitrogen, OpenIoT, Sitewhere, Webinos, and InatelPlat.

Name Communication

methods with

the server

Security SDKs

Programming

language

Releases

in 2017 1 a) b) c) d)

Devicehive

v3.3.3 6

MQTT, REST N** N N N Java, Javascript > 5

Orion v1.8.0

STH v2.2.0

REST N N N N Javascript 3

Kaa v0.10.0 REST 2 N N N N Java, C++, C,

Objective C

0 3

Konker v4.1 MQTT, REST Y N N N C, C++, Java,

Python

> 5

Linksmart

HDS
REST N N N N No SDK N.A4

Nimbits

v5.0.12

REST N N N N Java, Javascript 1

Nitrogen 7 HTTP 5, MQTT N.A N N N Javascript 0

OpenIoT

v0.6.1

REST, GSN N N N N N.A 0

Sitewhere

v1.11.0

MQTT, AMQP,

REST, Webscoket

N N N N Android, IoS 3

Webinos 7 HTTP(S) 5 N.A N.A N.A N.A N.A 0

InatelPlat

(Beta)

REST N N N N No SDK 1

a) – Authentication per device.

43

b) – Different passwords to publish and consult data

c) – Specific device restrictions

d) – Understanding device habits as well as MAC and IP address storage.

** – Devicehive uses private keys, but they are generated using the credentials of the same user.

1 – The information regarding the number of releases was extracted from the projects respective official Github repository, and only releases with a spacing of

10 days between them were counted.

2 – Kaa possesses a REST interface to communicate with the server, it is merely for administrative purposes, and it is not possible to retrieve measurement data.

3 – Kaa is preparing the release of a new version that is currently in closed tests.

4 – Linksmart code is not available in Github, and it is not possible to determine the number of releases in the year, only that it is regularly modified.

5 – Nitrogen and Webinos official documentation states that it supports HTTP communications (in the case of Webinos also HTTPS), However, no REST

interfaces were found in the documentation.

6 – Devicehive does not offer permanent data storage, meaning that if the server is restarted all data are lost.

7 – Nitrogen and Webinos do not possess a REST interface and no official plugin or auxiliary application are offered

N.A – Details inexistent or not found.

Among the 11 studied solutions, the following 5 middleware platforms, were

compliant with the proposed scenario and were considered for the quantitative

experiments: InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere. It is relevant

to mention the fact that, among these 11 studied solutions only Konker uses individual

authentication for each device and, as previously mentioned, none of the solutions

complies with the other proposed security measures. Regarding the communication

methods with the server, REST and MQTT were the most common. Regarding SDKs

programming language, Java and Javascript were dominant. The other solutions were

excluded from the quantitative performance comparison study because the following

reasons (per platform):

Devicehive: It was ruled out because the measurement data from devices is

cached, meaning that it if the server restarts all data are lost.

Kaa: It is not possible to inquiry the stored data from the server through the

REST API, meaning that the user has to develop another app for this feature, and no

official plugin or auxiliary application is offered.

Nimbits: Is going through a restructure and all documentation related to usage

was erased from the official documentation, and the public cloud is down with no

estimated date of return.

Nitrogen: Only Nitrogen enabled devices (devices that run Nitrogen software)

can communicate with the server. The project has received no updates to its Github

repository since March 2015, and the official website domain is for sale.

OpenIoT: The project has received no updates to its Github repository since

November 2015.

44

Webinos: Only Webinos enabled devices (devices that run Webinos software)

can communicate with the server, besides that, it is not suitable for real systems, as many

critical features are still unimplemented. It has received no updates to its Github pzp

module since February 2014, and pzh since March 2015.

A qualitative comparison is a good method to identify which solutions can be

applied to a scenario

4.3. Performance assessment of IoT middleware using quantitative

metrics

The experiments present in this chapter were performed in a real network

scenario. The packets were generated through Apache Jmeter [92] in a wired LAN with

1Gbps. The experiments were performed in a wired LAN instead of a wireless IoT

environment because the goal of the dissertation is to evaluate the application,

abstracting from constraints of the physical world, guaranteeing that, if such a high

number of requests arrives at the server, the middleware will be able to deal with them.

A wired LAN Guarantees that packets successfully arrive in the server, and that network

aspects such as delay, or packet loss are not due to the unstable network environment.

Before conducting any experiment, it was verified that each solution considered in this

study runs for an extended period without needing a restart and stores more than 180

GB of data. For the quantitative evaluation, only five (5) of the eleven (11) platforms

could be considered because the others were not compliant with the considered scenario,

as described in Section 4.2. For comparison purposes, it is used a simple pointing system

to classify the solutions where, for a given topic under evaluation (criterion), the

platform that performs better receives five (5) points, the second four (4), and so on. All

the platforms start with zero (0) points in each criterion and the gathered points are only

valid in each criterion. This pointing system intends to demonstrate that the best solution

depends on the prioritized requirement.

The study considers the Inatel Smart Campus scenario where most devices send

fifteen (15) parameters. One (1) parameter will have a weight of 0.3, fifteen (15)

parameters a weight of 0.6, and one hundred (100) parameters 0.1. Although this

45

weighting system is inspired in the Inatel Smart Campus scenario, it is observed that

most devices will not send more than fifteen (15) parameters.

Devices send various variables results to middleware, meaning that an object can

send the external temperature, its current location, battery level, and much more. These

variables are also referred to as parameters. In the paper, the naming convention used to

perform the experiments are the following: variable names = parameter (number of

parameter), variable value = 10+number of parameter. To clarify, variable 1 is called

parameter1, and variable 100 is parameter100. The value of variable 1 is 11 and the

value of variable 100 is 110.

Details on the hardware specifications of the host machine, as well as guest

machines can be found in Table 5. Information regarding the OS that each middleware

ran can be found in Table 6.

Table 5 – Host and guest hardware specifications.

Host Guest

Processor Frequency OS RAM Cores RAM

Intel Xeon E5-1620 v3 3.50 Ghz Windows 10 32 GB 4 8GB

Table 6 – Operating system where each solution was running.

 InatelPlat Konker Linksmart HDS Orion + STH Sitewhere

OS Ubuntu 16 Ubuntu 16 Ubuntu 16 Centos 7 Ubuntu 16

4.3.1 Packet size to publish data

Here, the sent and received bytes are analyzed because RESTFUL methods

generally end with a reply code. This experiment is critical, because it helps to balance

the number of devices per gateway. The middleware that performs better will be

determined by a sum of sent and received Bytes. Figure 7 presents the packet size of a

single REST request to publish data with 1, 15, and 100 parameters.

46

Figure 7 – Analysis of packet size of a single request where 1, 15, and 100 parameters were sent

considering the InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere middleware.

In this category, Konker performed better than the rest, followed by Inatel,

Linksmart, Sitewhere, and Orion. It is observed that when data is sent to Orion or

Sitewhere, more Bytes are received than sent regardless of the number of parameters.

Also, Konker and Linksmart are the only middleware platforms in which the number of

received Bytes does not increase when more parameters are sent.

4.3.2 Error percentage

The goal of this experiment is to determine if the middleware platforms can deal

with the incoming load without errors. To accomplish this goal, data were sent when

100, 1000, 5000, and 10000 concurrent users were present. In each experiment, the users

were sending 1, 15, and 100 parameters. In this section the pointing system will be

different, since the ones that do not meet the viability criteria shall gather 0 points. The

viability criterion considered here states that more than 15% errors will not be tolerated.

Keep in mind that all failures were due to the middleware not being able to deal with

the number of requests. Figure 8 displays the analysis of the error percentage. With 100

concurrent users none of the middleware platforms encountered errors, so that data are

neglected from the figure.

47

Figure 8 – Analysis of the error percentage for 1000, 5000, and 10000 users where 1, 15, and 100

parameters were sent considering the InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere

middleware.

In terms of error percentage, Orion and Sitewhere are virtually tied in every

aspect (Orion is slightly better). The next that performs better is InatelPlat, that displays

errors in every experiment when 100 parameters are sent. Following, Konker is viable

until 5000 concurrent users (where it presents less errors than InatelPlat), and Linksmart

is the last displaying a high error rate when it was not viable. InatelPlat is slightly below

the viability limit when there are 10000 concurrent users and 100 parameters (14,67).

Linkmart cannot deal with many parameters, not being viable in 5 out of the 9 scenarios,

and with an astounding error percentage it is unviable.

The packet size and error percentage might be related, because packets that

implement more robust code correction mechanisms tend to be larger. However, it is a

mere speculation because none of the Middleware provide details in that regard.

4.3.3 Response times

The goal of this experiment is to determine the amount of time each middleware

platform needs to process a considerable number of requests. To accomplish this goal,

data were sent with 1, 15, and 100 parameters, when there were 100, 1000, 5000, and

10000 concurrent users. All solutions with an error percentage above 15% were

excluded in the respective scenario they were deemed unviable (see 4.4.2). Figures 9 to

12 display the response times. For this test, the most important statistical measures are

48

the average and median. The median is favored over the standard deviation because

since it was a real-life experiment, and not a simulation, it is normal for the server to

attend some of the requests in an extremely high time. Therefore, in this particular case,

the standard deviation does not accurately depict the behavior of the system.

A noteworthy aspect to this experiment is the fact that Orion only forwards data

to STH if the variable value is different than the one previously registered. For this

reason, when experimenting with Orion, in each parameter of each request, a random

number was sent, respecting the length of the values presented in 4.4. This was done

because otherwise Orion would have a slight advantage in the experiments, since the

data would not have to be forwarded to STH, reducing the load on the server.

Figure 9 – Analysis of response time for 100 concurrent users where 1, 15, and 100 parameters were

sent considering the InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere middleware.

In a scenario with 100 concurrent users, the difference among response times is

minimal, the only significant difference is at 100 parameters, where Linksmart response

time is 12 times more than the others (demonstrating that even when few data are sent

Linksmart has problems dealing with 100 parameters). Another noteworthy aspect is

that Konker’s median is higher than the average at 1 and 15 parameters. The order from

best to worse in this scenario is Sitewhere, Orion, Linksmart, InatelPlat, and Konker.

49

Figure 10 – Analysis of the response time for 1000 concurrent users where 1, 15, and 100 parameters

were sent considering the the InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere middleware.

In a scenario with 1000 concurrent users the difference among middleware platforms

starts to get noticeable. Orion and Sitewhere clearly dominate, but when sending 100

parameters, Sitewhere response time is far superior than the rest, and Orion is surpassed

by InatelPlat. Linksmart was not included in the comparison, where 100 parameters

were sent because it presented an error percentage above 15% (see 4.4.2). The ranking

from best to worse in a scenario with 1000 concurrent users is Orion, Sitewhere,

InatelPlat, Linksmart, and Konker.

50

Figure 11 – Analysis of the response time for 5000 concurrent users with 1, 15, and 100 sent

parameters considering the InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere middleware.

In a scenario with 5000 concurrent users, the difference between Orion and

Sitewhere is minimal and they are virtually tied, but Sitewhere once again is much better

with 100 parameters (InatelPlat is the closest middleware when 100 parameters are sent,

it shows an average response time more than 3 times higher). Also, the average and

median start distancing from each other in most scenarios, however, the average stills

higher. The only exception to the median being lower than average is for Orion with

100 parameters. Linksmart was not included in the comparison when 15 and 100

parameters are sent because it presented an error percentage above 15% (see 4.4.2). The

ranking from best to worse in this experiment is Orion, Sitewhere, InatelPlat, Linksmart,

and Konker. Notice that Linksmart is not viable in this scenario when sending 15 and

100 parameters.

51

Figure 12 – Analysis of the response time for 10000 concurrent users with 1, 15, and 100 sent

parameters considering the InatelPlat, Linksmart, Orion+STH, and Sitewhere middleware.

In a scenario with 10000 concurrent users, once again Orion and Sitewhere are

virtually tied. When it gets to 100 parameters, once again Orion’s performance moves

from second, to third position, being supplanted by InatelPlat. Also, Orion’s median is

once again higher than the average at 100 parameters. The ranking from best to worse

in this scenario is Orion, Sitewhere, InatelPlat, Linksmart, and Konker. Linksmart was

not included in the comparison where 15 and 100 parameters were sent, because it

presented an error percentage above 15% (see 4.4.2). Konker was not included in the

comparison where 1, 15, or 100 parameters were sent, because it presented an error

percentage above 15% (see 4.4.2). Figures 13 and 14 presents Sitewhere’s Graphical

User Interface to illustrate its operation.

Figure 13 – Illustration of Sitewhere Graphical User Interface.

52

Figure 14 – Sitewhere Graphical User Interface showing sent parameters to Sitewhere’s Database.

53

Chapter 5: Conclusion and future work

5.1. Learned lessons

Through this research study, valuable lessons were learned, that can aid future

researchers interested in open-source software solutions, either as developers trying to

create/improve solutions, or users that want to evaluate solutions.

Eliminating blank spaces before sending data to the middleware is

necessary, and data precision should be evaluated: Most REST communications are

sent without trimming white spaces, and every additional white space is counted towards

the number of sent bytes. People who deploy IoT solutions should carefully manage the

data their devices send, because as the number of concurrent users grows, the additional

white spaces start adding up. The first step is trimming white spaces beforehand. The

second is planning the precision of the sent data according to the scenario. For example,

if a device is measuring temperature, the user should define if it matters to the scenario

that the temperature sent to the middleware is 7.5 instead of 7.533323222.

Documentation should enable users to easily and quickly trial the solution:

Ensuring that anyone can easily install and run the solution should be one of the

developer’s priority, because it increases the likelihood that interested parties will be

able to successfully trial the solution. This not only makes it more popular, but ensures

that bugs (especially documentation bugs) are discovered. A docker implementation or

a virtual machine with every aspect configured ensure that installation is not a problem.

Another aspect that is important is related to the post-installation, where users finish

installing the solution, but there are no examples to follow. Regarding the virtual

machine, it is essential that the developers configure it with LVM (Logical Volume

Manager) during the OS installation, so the Disk can be expanded.

Support medium should be public: When trying middleware platforms for the

first time, it is common to encounter bugs either in the documentation or the software

itself. Another aspect that should be taken into account is human error. For this reason,

middleware platforms (especially the open-source) should use a public forum, where

users can expose issues, avoiding direct email contacts unless the subject is too sensitive

to be exposed in public. Such action creates a knowledge base that is easily accessible

54

by all users. Solutions can use their own private forum, but with so many public forums

available on the web it seems unnecessary, especially for open-source solutions.

Developers should provide more information on the necessary software:

Something that can be confusing for users that are interested in running the solution is

the additional software that is necessary, and how to install it. For this reason, developers

should provide details on how to install them, and not assume that the user already

knows how to do it. Also, the versions of the additional software in which the installation

tested, as well as the OS should be present in the documentation. Clarifying the version

is important because in Linux distributions it is common to install packages using YUM

(Yellowdog Updater Modified) or APT (Advanced Packaging Tool), and they download

the latest version of the desired software, which can be incompatible with the

middleware platform. So, imagine that the documentation tells users to install the

database through APT, and it was written when the latest version of the database was

1.4. Five months later a user tries to follow the installation, and it fails, because the

database version is now 2.0.0. The user will waste valuable time repeating the

installation steps and debugging.

Documentation should not be written exclusively by the programmers: It is

natural for someone that is so familiar with what was developed to neglect important

aspects of documentation. It is not necessarily bad faith because in such cases, the person

assumes that what was not described is intuitive. Also, they are so familiar with the

problem that they forget to think outside of the box when using it.

Documentation should provide a performance tuning section: Every

software is prone to performance issues, either due to programming mistakes, or

configuration issues when it is deployed. In the case of mal-configuration, it can be the

application itself that was not well configured, the supplementary software such as the

database, or even the server in which the solution is hosted. For this reason, the

middleware documentation should provide a section where performance tuning issues,

and best operation methods are discussed, explained, and exemplified. The presence of

such section can also improve security (because the server is well configured), and

guarantees that solutions are deployed to their maximum potential. Without such

section, users have to search the web for performance tuning of each auxiliary software,

or even experiment with the configurations of the software itself through trial and error.

55

Studies should avoid mentioning discontinued solutions: There are many

available IoT middleware platforms, either paid or free. It is very common for free

solutions get discontinued. Some such as ThingSpeak even start as an open-source, then

move to the model of PaaS (an old version of ThingSpeak can still be downloaded from

the Github repository). When conducting research, authors should avoid mentioning

discontinued solutions. It is difficult to evaluate whether a solution was discontinued or

not, but authors should do their best to warn readers, that the mentioned solution does

not receive updates in a significant amount of time. Interested parties can easily track

solutions, as well as discover new ones if this is done. This recommendation is not only

valid for IoT middleware platforms, but every other type of IoT platform, and software

in general.

5.2. Main Conclusions

Throughout this dissertation, an up-to-date study regarding IoT middleware was

presented, and the performance of open-source middleware solutions, as well as a

proprietary solution from Inatel were studied and evaluated.

The dissertation first introduced the motivation and delimited the research topic,

describing the objectives and displaying its main contributions. In Chapter 2, an up-to-

date study regarding IoT middleware was presented. This chapter began with a

description of IoT technologies, giving attention to the fact that it is common for the

same tech company to support competing standards, which is a clear sign that they are

not sure which standard will prevail. Also, it is shown how connectivity is different in

IoT (in comparison to the current Internet), where the primary concern is low energy

consumption on end-devices. Then, the chapter discusses IoT platforms, showing their

functional and non-functional requirements, dividing IoT platforms into 3 categories

while also revealing the priorities of each one. A table displaying a list of IoT platforms

and which categories each one respectively targets is also presented. The dissertation

then focuses on IoT middleware platforms, detailing their purpose in IoT and how they

accomplish their goals, while also providing more information on some of the existing

middleware solutions. The chapter ends by proposing a reference architecture for

middleware solutions that details the best operation method of each module.

56

Chapter 3 presented the importance of performance metrics to objectively

compare middleware solutions and highlights the fact that no metrics or guidelines are

available in the literature to objectively compare this type of software. The chapter then

proposes qualitative and quantitative metrics to compare middleware solutions. The

qualitative metrics are an excellent way to filter solutions for a final quantitative test. In

both qualitative and quantitative metrics, this chapter also displays honorable mentions,

which are metrics that although exceptional, do not deserve top honors.

In chapter 4, the performance of open-source middleware solutions, as well as a

proprietary solution from Inatel were evaluated using the qualitative and quantitative

metrics previously proposed in Chapter 3. This chapter began with a description of the

experimentation scenario, which is Inatel Smart Campus. It then proceeds on

showcasing a qualitative comparison among 11 middleware solutions. After finishing

the qualitative comparison, 5 middleware were compliant with the proposed scenario;

they are InatelPlat, Konker, Linksmart, Orion+STH, and Sitewhere. It is hard to verify

the fact that of the 11 solutions, only Konker uses individual authentication for each

device.

The 5 middleware that were compliant with the proposed scenario proceeded to

a performance assessment using the quantitative metrics where it was verified that when

there are few concurrent users (up to 100), the difference between solutions is minimal,

and it does not matter much which middleware is deployed. The only exception to this

rule is with 100 parameters, in that case, the response time of Linksmart is almost 12

times more than the rest. Overall, Orion+STH and Sitewhere were more stable through

all experiments. However, there is no such thing as a best middleware, and when

deploying an IoT solution, users should take their scenario into account. In the case of

low throughput where packet size is the most crucial aspect, Konker and Linksmart are

the best. If the number of parameters sent by the device is the most critical aspect,

Linksmart can either be the best in most scenarios with 1 parameter, or the worse with

100 parameters. If error percentage is the top priority, Orion and Sitewhere are the best

with less than 1% error rate (Orion is slightly better). If the number of concurrent users

is not more than 5000, InatelPlat and Konker are also viable.

57

The metrics related to Packet size should not be underestimated, because it is a

valuable tool when dimensioning the solution. Imagine that devices are directly

connected to a gateway, which then forwards the requests to the middleware, and

Konker (the most efficient regarding packet size) is the middleware being used, also,

the goal is to send 15 parameters. The gateway transfer rate is 1 Mbps. Now consider

that packets are sent to the gateway without any compression meaning that 535 Bytes

are sent, and 580 received. The maximum number of devices per gateway will be 215

(because more Bytes are received than sent in this case). In a real IoT environment, the

data sent to the gateway would be compressed. However, in a real IoT environment, it

is common for devices to be connected through a mesh network which is usually slower,

and very crowded, meaning that fewer devices would connect directly to the gateway.

Knowing the packet size that is transmitted in each scenario, helps users in the

distribution of network load and allow a planning of their IoT solution.

Perhaps the biggest challenge in IoT is related to security. Many tech experts do

not advise consumers to purchase IoT devices, such as, door locks or children toys that

are connected to the Internet. They mention such advises because IoT is insecure,

mainly, because developers neglect important security aspects to deliver products faster.

If IoT image does not change soon, regaining public (users) trust will be difficult.

5.3. Future work

As future work, it would be interesting to verify if the performance of the

middleware platforms would the same in a scenario with unreliable data transmission.

However, in such scenarios, many challenges occur, especially regarding load

balancing. The number of gateways, as well as the devices per gateway, should be well

planned. In case of a mesh network, further planning is necessary because some devices

may become overloaded. Even if the work abstracts itself from such constraints by

sending data through a wireless IoT network, in which the requests are sent through

Apache Jmeter, the variation of the of latency would be significant. Take Inatel Smart

Campus as an example, where devices transmit at regular time intervals, it takes around

6 minutes for a group of 20 devices to transmit data to the server. For a similar

58

experiment to be made in an unreliable environment, the number of repetitions should

be extremely high due to the unstable network conditions, and the experiment could last

years.

Another study that would be relevant is to repeat the experimentations on this

dissertation using clustered servers, mainly to observe if the middleware platforms that

were unviable at 10.000 parameters improved their performance. Also, repeating the

experimentations present in this dissertation using a different application protocol such

as CoAP and MQTT.

Finally, developing or modifying a middleware to comply with the proposed

security features as well as the proposed security aspects would be interesting.

59

References

[1] D. Evans, “The Internet of Things - How the Next Evolution of the Internet is

Changing Everything,” Cisco white paper, pp. 1–11, April 2011.

[2] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and Marrs, “Disruptive

technologies: Advances that will transform life, business, and the global

economy,” McKinsey Global Insitute, pp. 1–162, May 2013.

[3] Lihong Jiang, Li Da Xu, Hongming Cai, Zuhai Jiang, Fenglin Bu, and Boyi Xu,

“An IoT-Oriented Data Storage Framework in Cloud Computing Platform,”

IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1443–1451, May

2014.

[4] Ofcom, “The communications market report,” pp. 1-431, August 2015.

[5] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, Internet Things Based on

Smart Objects. Springer International Publishing, Switzerland, 2014.

[6] Guangyi Xiao, Jingzhi Guo, Li Da Xu, and Zhiguo Gong, “User Interoperability

With Heterogeneous IoT Devices Through Transformation,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 2, pp. 1486–1496, May 2014.

[7] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware for

internet of things: A survey,” IEEE Internet Things Journal, vol. 3, no. 1, pp. 70–

95, February 2016.

[8] A. H. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and M. Z. Sheng, “IoT

Middleware: A Survey on Issues and Enabling technologies,” IEEE Internet

Things Journal, vol. 4, no. 1, pp. 1–20, February 2017.

[9] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT):

A vision, architectural elements, and future directions,” Future Generations

Computer Systems, vol. 29, no. 7, pp. 1645–1660, September 2013.

[10] A. Farahzadi, P. Shams, J. Rezazadeh, and R. Farahbakhsh, “Middleware

technologies for cloud of things-a survey,” Digital Communications and

60

Networks, pp. 1-13, April 2017.

[11] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, “Internet of Things,

Blockchain and Shared Economy Applications,” Procedia Computer Science,

vol. 98, pp. 461–466, 2016.

[12] I. Sommerville, Software Engineering. 10th ed., Addison-Wesley, Boston, 2015.

[13] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787–2805, October 2010.

[14] International Telecommunication Union, “Recommendation ITU-T Y.2060:

Overview of the Internet of things,” pp. 1–14, June 2012.

[15] A. M. Alberti, “A conceptual-driven survey on future internet requirements,

technologies, and challenges,” Journal of the Brazilian Computer Society, vol.

19, no. 3, pp. 291–311, September 2013.

[16] International Telecommunication Union, “Measuring the Information Society

Report 2016,” pp. 1-256, November 2016.

[17] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, pp.

2347–2376, June 2015.

[18] J.-C. Lee, J.-H. Jeon, and S.-H. Kim, “Design and implementation of healthcare

resource model on IoTivity platform,” 2016 International Conference on

Information and Communication Technology Convergence (ICTC), Jeju, South

Korea, October 19-21, 2016, pp. 887–891.

[19] O. Tomanek and L. Kencl, “Security and privacy of using AllJoyn IoT framework

at home and beyond,” 2016 2nd International Conference on Intelligent Green

Building and Smart Grid (IGBSG), Prague, Czech Republic, June 27-29, 2016,

pp. 1-6.

[20] J. Zhou, Z. Cao, X. Dong, and A. V Vasilakos, “Security and Privacy for Cloud-

Based IoT: Challenges,” IEEE Communications Magazine, vol. 55, no. 1, pp. 26–

33, January 2017.

61

[21] R. K. Ghosh, Wireless Networking and Mobile Data Management. Springer,

Singapore, 2017.

[22] B. Reynders, W. Meert, and S. Pollin, “Range and coexistence analysis of long

range unlicensed communication,” 23rd International Conference on

Telecommunications (ICT) 2016, Thessaloniki, Greece, May 16-18, 2016, pp. 1-

6.

[23] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range

communications in unlicensed bands: the rising stars in the IoT and smart city

scenarios,” IEEE Wireless Communications, vol. 23, no. 5, pp. 60–67, October

2016.

[24] B. Badihi, L. F. Del Carpio, P. Amin, A. Larmo, M. Lopez, and D. Denteneer,

“Performance Evaluation of IEEE 802.11ah Actuators,” IEEE 83rd Vehicular

Technology Conference (VTC Spring) 2016, Nanjing, China, May 15-18, 2016,

pp. 1-5.

[25] J. G. Andrews et al., “What Will 5G Be?,” IEEE J. Sel. Areas Commun., vol. 32,

no. 6, pp. 1065–1082, June 2014.

[26] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi,

“Toward better horizontal integration among IoT services,” IEEE

Communications Magazine, vol. 53, no. 9, pp. 72–79, September 2015.

[27] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet protocols for

web enablement of sensors using constrained gateway devices,” 2013

International Conference on Computing, Networking and Communications

(ICNC), San Diego, CA, USA, January 28-31, 2013, pp. 334-340.

[28] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Performance

evaluation of MQTT and CoAP via a common middleware,” 2014 IEEE Ninth

International Conference on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP), Singapore, Singapore, April 21-24, 2014, pp.

1-6.

[29] E. P. Frigieri, D. Mazzer, and L. F. C. G. Parreira, “M2M Protocols for

Constrained Environments in the Context of IoT : A Comparison of Approaches,”

62

XXXIII Brazilian Telecommunications Symposium, Juiz de Fora - MG, Brazil,

September 1-4, 2015, pp. 1-5.

[30] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of JSON

and XML Data Interchange Formats: A Case Study,” 2009 ISCA 22nd

International Conference on Computer Applications in Industry and Engineering

(CAINE), San Francisco, USA, November 4-6, 2009, pp. 1-6.

[31] H. Lampesberger, “Technologies for Web and cloud service interaction: a

survey,” Service Oriented Computing and Applications, vol. 10, no. 2, pp. 71–

110, June 2016.

[32] A. Clements, Principles of computer hardware, 4th ed. Oxford University Press,

Oxford, 2006.

[33] A. Tiwana, Platform Ecosystems Aligning Architecture, Governance, and

Strategy. Elsevier, 2013.

[34] M. Glinz, “On Non-Functional Requirements,” 15th IEEE International

Requirements Engineering Conference (RE 2007), Delhi, India, October 15-19,

2007, pp. 21-26.

[35] P. Dempsey, “The Teardown: Google Home personal assistant,” Engineering and

Technology, vol. 12, no. 3, pp. 80–81, April 2017.

[36] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware solutions for the

internet of things,” 2012 International Conference on Collaboration

Technologies and Systems (CTS), Denver, CO, USA, May 21-25, 2012, pp. 21-

26.

[37] Open Mobile Alliance, “Device Management Requirements: Approved Version

2.0,” pp. 1–14, 2016.

[38] Slashdot Media, “SourceForge - Download, Develop and Publish Free Open

Source Software.” [Online]. Available: https://sourceforge.net/. [Accessed: 22-

Oct-2017].

[39] Amazon Web Services, “AWS IoT - Amazon Web Services.” [Online].

Available: https://aws.amazon.com/iot/. [Accessed: 22-Oct-2017].

63

[40] SAMSUNG, “IoT Cloud Platform — Samsung ARTIK Cloud.” [Online].

Available: https://artik.cloud/.

[41] Autodesk Inc., “Autodesk Fusion Connect. Enterprise IoT Software Platform.”

[Online]. Available: https://autodeskfusionconnect.com/. [Accessed: 22-Oct-

2017].

[42] Carriots, “Carriots - Internet of Things Platform | Home.” [Online]. Available:

https://www.carriots.com/. [Accessed: 22-Oct-2017].

[43] M. Autili, P. Inverardi, and M. Tivoli, “Choreography Realizability Enforcement

through the Automatic Synthesis of Distributed Coordination Delegates,”

Science of Computer Programming, October 2017.

[44] Chorevolution, “chorevolution.eu: (Main.WebHome).” [Online]. Available:

http://www.chorevolution.eu/bin/view/Main/.

[45] CloudPlugs Inc., “CloudPlugs :: Internet Of Things Platform, IoT, public

cloud ::” [Online]. Available: https://cloudplugs.com/. [Accessed: 22-Oct-2017].

[46] DataArt Solutions, “DeviceHive - Open Source IoT Data Platform with the wide

range of integration options.” [Online]. Available: https://devicehive.com/.

[Accessed: 22-Oct-2017].

[47] EVRYTHNG, “EVRYTHNG IoT Smart Products Platform |.” [Online].

Available: https://evrythng.com/. [Accessed: 22-Oct-2017].

[48] Fiware, “Fiware-Orion.” [Online]. Available: https://fiware-

orion.readthedocs.io/en/develop/. [Accessed: 22-Oct-2017].

[49] Fiware, “Fiware-STH-Comet.” [Online]. Available: https://fiware-sth-

comet.readthedocs.io/en/latest/. [Accessed: 22-Oct-2017].

[50] Grovestreams, “Welcome - Storage and Analytics for the Internet of Things.”

[Online]. Available: https://grovestreams.com/. [Accessed: 22-Oct-2017].

[51] Linux Foundation, “Home | IoTivity.” [Online]. Available:

https://www.iotivity.org/. [Accessed: 22-Oct-2017].

[52] KaaIoT Technologies, “Kaa Open-Source IoT Platform 2017 — IoT cloud

64

platform the Internet of Things solutions and applications that set the standard.”

[Online]. Available: https://www.kaaproject.org/. [Accessed: 22-Oct-2017].

[53] Konker Labs, “Konker - Your solutions connected in a fast and simple way!”

[Online]. Available: http://www.konkerlabs.com/. [Accessed: 22-Oct-2017].

[54] Linksmart, “LinkSmart® Documentation Home - Home - LinkSmart® Docs.”

[Online]. Available: https://docs.linksmart.eu/. [Accessed: 22-Oct-2017].

[55] Losant IoT, “Losant | Losant.” [Online]. Available: https://www.losant.com/.

[Accessed: 22-Oct-2017].

[56] M2MLabs, “Home | m2mlabs.com.” [Online]. Available:

http://www.m2mlabs.com/. [Accessed: 22-Oct-2017].

[57] Microsoft IoT, “Azure IoT Suite—IoT Cloud Solution | Microsoft.” [Online].

Available: https://www.microsoft.com/en-us/internet-of-things/azure-iot-suite.

[Accessed: 22-Oct-2017].

[58] Nimbits Inc., “Nimbits Platform.” [Online]. Available:

https://www.nimbits.com/. [Accessed: 22-Oct-2017].

[59] Nitrogen, “nitrogenjs · GitHub.” [Online]. Available:

https://github.com/nitrogenjs. [Accessed: 22-Oct-2017].

[60] OpenIoT Consortium, “OpenIoT – Open Source cloud solution for the Internet

of Things.” [Online]. Available: http://www.openiot.eu/. [Accessed: 22-Oct-

2017].

[61] SiteWhere, “SiteWhere | The Open Platform for the Internet of Things.” [Online].

Available: http://www.sitewhere.org/. [Accessed: 22-Oct-2017].

[62] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito, “Stack4Things:

a sensing-and-actuation-as-a-service framework for IoT and cloud integration,”

Annals of Telecommunications, vol. 72, no. 1-2, pp. 53-70, February 2017.

[63] Stack4Things, “Stack4Things | An OpenStack-based Internet of Things

Framework.” [Online]. Available: http://stack4things.unime.it/. [Accessed: 22-

Oct-2017].

65

[64] Tago LLC, “Tago - Home.” [Online]. Available: https://tago.io/. [Accessed: 22-

Oct-2017].

[65] Telit, “IoT Platform Overview – Telit.” [Online]. Available:

https://www.telit.com/products/iot-platforms/iot-platform-overview/.

[Accessed: 22-Oct-2017].

[66] Temboo Inc, “Temboo.” [Online]. Available: https://temboo.com/. [Accessed:

22-Oct-2017].

[67] The MathWorks Inc, “IoT Analytics - ThingSpeak Internet of Things.” [Online].

Available: https://thingspeak.com/. [Accessed: 22-Oct-2017].

[68] PTC, “ThingWorx IoT Platform | PTC.” [Online]. Available:

https://www.ptc.com/en/products/iot/technology-platform-thingworx.

[Accessed: 22-Oct-2017].

[69] Ubidots, “IoT platform | Internet of Things | Ubidots.” [Online]. Available:

https://ubidots.com/. [Accessed: 22-Oct-2017].

[70] WSO2, “WSO2 IoT Server - Flexible Open Source IoT Platform.” [Online].

Available: https://wso2.com/iot. [Accessed: 22-Oct-2017].

[71] Webinos Foundation, “webinos | The webinos Foundation.” [Online]. Available:

http://webinos.org/. [Accessed: 22-Aug-2017].

[72] Xively, “IoT Platform for Connected Devices| Xively by LogMeIn.” [Online].

Available: https://www.xively.com/. [Accessed: 22-Oct-2017].

[73] A. R. S. Hammergren, Thomas C., Data warehousing for dummies, 2nd ed.

Hoboken, N.J.: Wiley, 2009.

[74] L. Miller, Public PaaS for dummies, 2nd ed. Hoboken, New Jersey No: John

Wiley & Sons, Inc., 2016.

[75] KaaIoT, “Kaa IoT Product Development Platform — IoT Application

Enablement.” [Online]. Available: https://www.kaaiot.io/. [Accessed: 22-Oct-

2017].

[76] Pivotal Software Inc, “Tools.” [Online]. Available: https://spring.io/tools.

66

[Accessed: 22-Oct-2017].

[77] M. Eisenhauer, P. Rosengren, and P. Antolin, “A Development Platform for

Integrating Wireless Devices and Sensors into Ambient Intelligence Systems,”

2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh and

Ad Hoc Communications and Networks Workshops, Rome, Italy, June 22-26, 2009,

pp. 1-3.

[78] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, and L. Du, “Connecting

IoT Sensors to Knowledge-based Systems by Transforming SenML to RDF,”

Procedia Computer Science, vol. 32, pp. 215–222, 2014.

[79] “nitrogen.io.” [Online]. Available:

http://domain.hacker.sh/parked.html?domain=nitrogen.io. [Accessed: 22-Oct-

2017].

[80] WP3, “D3.7: Final webinos specification,” [Online]. Available:

http://webinos.org/files/2012/09/webinos-

phase_II_architecture_and_components.pdf. [Accessed: 20-Oct-2017].

[81] G. Fersi, “Middleware for Internet of Things: A Study,” 2015 International

Conference on Distributed Computing in Sensor Systems, Fortaleza, Brazil, June

10-12, 2015, pp. 230-235.

[82] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?,” Computer, vol.

43, no. 2, pp. 12–14, February 2010.

[83] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware

computing for the internet of things: A survey,” IEEE Communications Surveys

and Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[84] F. C. Delicato, P. F. Pires, and T. Batista, Middleware Solutions for the Internet

of Things. Springer, London, 2013.

[85] “freeboard - Dashboards For the Internet Of Things.” [Online]. Available:

https://freeboard.io/. [Accessed: 27-Sep-2017].

[86] “Grafana - The open platform for analytics and monitoring.” [Online]. Available:

https://grafana.com/. [Accessed: 27-Sep-2017].

67

[87] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced lightweight

encryption algorithms for IoT devices: survey, challenges and solutions,” Journal

of Ambient Intelligence and Humanized Computing, pp. 1-18, May 2017.

[88] Search Engine Journal, “Google PageRank Officially Shuts its Doors to the

Public - Search Engine Journal.” [Online]. Available:

https://www.searchenginejournal.com/google-pagerank-official-shuts-doors-

public/161874/. [Accessed: 28-Oct-2017].

[89] “Moz | SEO Software, Tools & Resources for Smarter Marketing.” [Online].

Available: https://moz.com/.

[90] “Website Traffic, Statistics and Analytics - Alexa.” [Online]. Available:

http://www.alexa.com/siteinfo.

[91] A. J. A. M. van Deursen and J. A. G. M. van Dijk, “Using the Internet: Skill

related problems in users’ online behavior,” Interacting with Computers, vol. 21,

no. 5–6, pp. 393–402, Dec. 2009.

[92] Apache Software Foundation, “Apache JMeter - Apache JMeterTM.” [Online].

Available: http://jmeter.apache.org/. [Accessed: 25-Oct-2017].

