
Performance Assessment of
Management Protocols and Platforms for

Internet of Things

JONATHAN DE CARVALHO SILVA

Dezembro, 2018

Dissertation presented to the National
Institute of Telecommunications (INATEL),
as part of the requirements to obtain the
Master’s Degree in Telecommunications.

Advisor:
Prof. Dr. Joel José Puga Coelho
Rodrigues

Santa Rita do Sapucaí 2018

iii

Performance Assessment of
Management Protocols and Platforms for

Internet of Things

JONATHAN DE CARVALHO SILVA

Silva, Jonathan de Carvalho
S586p

Performance Assessment of Management Protocols and Platforms
for Internet of Things. / Jonathan de Carvalho Silva. – Santa Rita do Sapucaí,
2019.
 101 p.

 Orientador: Prof. Dr. Joel José Puga Coelho Rodrigues.
 Dissertação de Mestrado em Telecomunicações – Instituto Nacional
de Telecomunicações – INATEL.

 Inclui bibliografia e anexo.

 1. Internet of Things 2. Heterogeneity 3. IoT Network Management
4. IoT Device Management . 5. Platforms. 6. Protocols 7. Simple Network
Management Protocol 8. SNMP 9. NETCONF 10. M4DN.IoT 11. Mestrado em
Telecomunicações. I. Rodrigues, Joel José Puga Coelho. II. Instituto Nacional de
Telecomunicações – INATEL. III. Título.

CDU 621.39

Ficha Catalográfica elaborada pelo Bibliotecário da Instituição
CRB6-2718 – Paulo Eduardo de Almeida

vii

“One machine can do the work of fifty ordinary men. No machine can do the work of
one extraordinary man.”

Elbert Green Hubbard, Be Thankful

ix

Dedication

“To God, to my parents João Cândido
Ribeiro da Silva Filho and Carmen
Lúcia de Carvalho Silva and Carolina
for their unconditional support at all times.”

xi

Acknowledgments

I thank God first for giving me health and intelligence to complete this work.
I would like to express my sincere thanks to my supervisor, Prof. Joel Rodrigues, who

was at my side throughout the development of the work, for his confidence, optimism, and
guidance through all stages and challenges of this work.

To Prof. Guilherme Marcondes and Prof. Carlos Nazareth Marins, thank you very much
that during this master’s work, they encouraged and made available resources to carry out
this work.

My thanks to the group, IoT Research Group, for helping me and letting me contribute
to the group and also to the friendships gained during this learning process.

Thank you for supports of Finatel through the Inatel Smart Campus project, and by
Finep, with resources from Funttel, grant no. 01.14.0231.00, under the Radiocommunica-
tion Reference Center (Centro de Referência em Radiocomunicações — CRR) project of
the National Institute of Telecommunications (Instituto Nacional de Telecomunicações —
Inatel), Brazil.

I would like to say a big thank you to all my family and my girlfriend, who have always
been present in my life, whether in times of difficulties and sorrows or in times of joy. I am
sure they will always be together in my walk.

Finally, I thank to my parents, João Cândido Ribeiro da Silva Filho and Carmen Lúcia
de Carvalho Silva who are the people who are most enthusiastic about my personal and
professional success.

xiii

Contents

List of Figures xvii

List of Tables xix

Abbreviations 1

Resumo 3

Abstract 5

1 Introduction 7
1.1 Motivation . 7
1.2 Problem Definition . 9
1.3 Research Objectives . 9
1.4 Main Contributions . 9
1.5 Publications . 10
1.6 Registered Software . 11
1.7 Thesis statement . 11
1.8 Document Organization . 12

2 IoT Management Protocols and Platforms 13
2.1 Background . 13
2.2 IoT Network Management Protocols . 17

2.2.1 Simple Network Management Protocol (SNMP) 17
2.2.2 Network Configuration Protocol (NETCONF) 19
2.2.3 Open vSwitch Database (OVSDB) 20
2.2.4 Internet of Things Platform’s Infrastructure for Configurations (IoT-

PIC) . 21
2.2.5 IEEE 1905 . 22
2.2.6 LoWPAN Network Management Protocol (LNMP) 24

2.3 IoT Network Management Platforms . 25
2.3.1 IMPReSS . 25
2.3.2 OpenNMS . 26
2.3.3 OpenDaylight . 27
2.3.4 Zabbix . 28

2.4 IoT Device Management Protocols . 29
2.4.1 COnstrained networks and devices MANagement (COMAN) 29

xiv

2.4.2 Things Management Protocol (TMP) 32
2.4.3 CPE WAN Management Protocol (CWMP) 33

2.5 IoT Device Management Platforms . 34
2.5.1 Management for the Internet of Things (ManIoT) 34
2.5.2 Fiware . 37
2.5.3 ONEM2M . 38
2.5.4 SmartThings . 39
2.5.5 RestThing . 40
2.5.6 Xively . 41
2.5.7 Carriots . 42

2.6 Performance Comparison, Analysis, and Open Issues 43
2.6.1 Open research issues on IoT management 47

2.7 Summary . 47

3 Performance Evaluation of IoT Network Management Platforms and Protocols 49
3.1 Experimental Scenario . 49

3.1.1 Hardware and Software Specifications 49
3.1.2 System Architecture . 50

3.2 Qualitative Metrics . 52
3.2.1 IoT Network Management Protocols 54
3.2.2 IoT Network Management Platforms 57

3.3 Quantitative Metrics . 60
3.3.1 IoT Network Management Platforms and Protocols 60

3.4 Comparison Evaluation of Protocols and Platforms 62
3.5 Summary . 65

4 Proposal of an IoT Management Platform for Networks and Devices 67
4.1 Software Requirements Engineering . 67

4.1.1 Requirements Engineering Process 68
4.1.2 Theoretical Fundamentals of Requirements 70

Reuse of requirements . 70
Prototyping . 70

4.1.3 Requirements analysis . 71
Functional Requirements . 71
Non Functional Requirements . 72

4.1.4 Requirements Modeling . 72
4.1.5 System Requirements . 75

4.2 Proposal of a new IoT Management Platform (M4DN.IoT) 77
4.2.1 System Architecture . 77
4.2.2 Methods and models of software design 78

Data Flow Diagram . 78
Relationship Entity Diagram . 79

4.2.3 Languages and Technologies Used 79
4.3 Solution Demonstration and Validation . 80

4.3.1 Front-end and Back-end usability 81

xv

4.3.2 Main Functionalities and Operation 82
4.3.3 Future Developments . 85

4.4 Summary . 85

5 Conclusion and Future Works 87
5.1 Lessons Learned . 87
5.2 Concluding Remarks . 88
5.3 Future Works . 89

References 91

xvii

List of Figures

1.1 Illustration of an IoT Network Architecture and a plethora of available pro-
tocols. 8

2.1 Internet of Things Reference Architecture (IoT-RA). 14
2.2 Components of network management systems. 15
2.3 Illustration of an IoT network environment. 16
2.4 Illustration of the SNMP Protocol Architecture. 18
2.5 Illustration of the SNMP protocol for IoT devices. 18
2.6 Illustration of the NETCONF Protocol for IoT Architecture. 19
2.7 Illustration OVSDB Protocol for IoT Architecture. 20
2.8 Illustration of the IoT-PIC architecture. 21
2.9 Illustration of the protocol structure for IEEE 1905. 23
2.10 IEEE 1905 standard network management architecture. 24
2.11 Illustration device level monitoring procedure for LNMP Protocol. 25
2.12 Illustration of the OpenNMS architecture. 27
2.13 Illustration of the OpenDaylight architecture. 27
2.14 Illustration of the Zabbix architecture. 28
2.15 Illustration of the CoAP architecture. 30
2.16 OMA DM standard management architecture. 31
2.17 OMA LWM2M standard management architecture. 32
2.18 Illustration of the Things Management Protocol architecture. 32
2.19 Illustration of the CWMP Protocol messages. 34
2.20 Illustration of the Management for the Internet of Things. 35
2.21 ManIoT: Local Management Architecture. 36
2.22 ManIoT: Global/Remote Management Architecture. 37
2.23 Illustration of the Fiware architecture. 38
2.24 Illustration of the ONEM2M architecture. 39
2.25 Illustration of the SmartThings architecture. 40
2.26 Illustration of the RestThings architecture. 41
2.27 Illustration of the Xively architecture. 41
2.28 Illustration of the Carriots architecture. 43

3.1 Illustration of the real environment system architecture used to perform the
experiments. 51

3.2 Photography of the real environment scenario used to perform the experi-
ments. 51

3.3 Illustration of the layered architecture used in the real environment. 52

xviii

3.4 Illustration of the platforms layered architecture. 54
3.5 Error percentage of NETCONF and SNMP GET request with 10,000 Users

for ODL and OpenNMS. 62
3.6 Latency average histogram of NETCONF and SNMP GET request with

10,000 Users for ODL and OpenNMS. 63
3.7 NETCONF and SNMP GET average response time (in milliseconds) from

10,000 Users for ODL and OpenNMS. 64
3.8 NETCONF and SNMP GET throughput (in Kbps) from 10,000 Users for

ODL and OpenNMS. 65

4.1 Requirements Engineering Process: input and output process. 69
4.2 Use Case Diagram of the M4DN.IoT platform. 73
4.3 Activity Diagram of the M4DN.IoT platform. 74
4.4 Sequence Diagram of the M4DN.IoT platform. 75
4.5 Architecture of the M4DN.IoT platform and its main components (used in

a real environment scenario). 77
4.6 Data flow diagram of the M4DN.IoT platform. 78
4.7 Relationship entity diagram of the M4DN.IoT platform. 79
4.8 Illustration of the installation of the protocols. 81
4.9 Illustration of the installation of the protocols. 81
4.10 Illustration of the nodes register in OpenDayLight UI (DLUX). 82
4.11 User Register at the M4DN.IoT Platform. 83
4.12 Information from the IoT Network Management at the M4DN.IoT Platform. 83
4.13 Information from the IoT Device Management showing sensors data at the

M4DN.IoT Platform. 84
4.14 User Request Error of NETCONF request with 10,000 Users for M4DN.IoT

and OpenDayLight (ODL). 84

xix

List of Tables

2.1 Exchanged messages at the Abstraction layer. 23
2.2 Configuration Management Ad-Hoc commands. 26
2.3 COMAN - Candidate Technologies. 29
2.4 TMP Operational Requests/Response Messages. 33
2.5 Main characteristics comparison of the IoT network management protocols. 44
2.6 Main characteristics comparison of the IoT device management protocols. . 44
2.7 Main characteristics comparison of the IoT network management platforms. 45
2.8 Main characteristics comparison between available device management plat-

forms for IoT. 46

3.1 System Requirements of Hardware and Software to create the experimental
scenario. 50

3.2 Qualitative metrics description for IoT Management Protocols. 53
3.3 Qualitative performance evaluation of the IoT Network Management Pro-

tocols considered in this study. 55
3.4 Qualitative performance evaluation of the IoT Network Management Plat-

forms considered in this study. 57
3.5 Supported network management protocols by IoT network platforms. . . . 57
3.6 Quantitative metrics description for IoT Management Platforms. 60
3.7 NETCONF and SNMP GET packet message ratio for ODL and OpenNMS. 64

4.1 Functional Requirements of the IoT management solution (M4DN.IoT). . . 71
4.2 System Requirements minimum of Hardware and Software to installed the

M4DN.IoT platform. 76
4.3 Technologies used in M4DN.IoT platform. 80

1

Abbreviations

3PP Third Party Product
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules
BGP Border Gateway Protocol
COMAN COnstrained netwoks and devices MANagement
CoAP Constrained Application Protocol
CSV Comma-Separated Values
DaaS Database as a Service
DFD Data flow diagram
DSD Data Structure diagrams
DTLS Datagram Transport Layer Security
FCAPS Fault, Configuration, Accounting, Performance, Security
ERD Relationship Entity Diagrams
GUI Graphical User Interface
IDE Integrated Development Environment
IETF Internet Engineering Task Force
IoT Internet of Things
IoT-A IoT Architecture
IoT-PIC Internet of Things Platform’s Infrastructure for Configurations
IoT RA Internet of Things Reference Architecture
ISCampus Inatel Smart Campus
ISO International Organization for Standardization
ITU-T International Telecommunications Union - Telecommunications
JMX Java Management Extension
JSON JavaScript Object Notation
JWT JSON Web Tokens
LNMP LoWPAN Network Management Protocol
M2M Machine-to-Machine
ManIoT Management for the Internet of Things
MANET Mobile Ad Hoc Networks
MD-SAL Model Driven Service Abstraction Layer
MIB Management Information Base
MO Mobile Object
MQTT Message Queuing Telemetry Transport
NED Network Enabled Devices
NETCONF Network Configuration Protocol

2

NFV Network Functions Virtualization
NoSQL Not Only SQL
OID Object Identifiers
OMA-DM Open Mobile Alliance Device Management
OMA-LwM2M Open Mobile Alliance Lightweight M2M
OpenNMS Open Network Management System
OVSDB Open vSwitch Database
PAN Personal Area Network
PCEP Path Computation Element Protocol
QoS Quality of Service
RA Architecture Reference
RRD Round Robin Database
SDN Software-Defined Network
SNMP Simple Network Management Protocol
SOA Service-Oriented Architecture
TMP Things Management Protocol
UDP User Datagram Protocol
UML Unified Modeling Language
WSN Wireless Sensor Network
WSP Wireless Session Protocol
XML eXtensible Markup Language
XMPP Extensible Messaging and Presence Protocol

3

Resumo

A Internet das Coisas (do Inglês, Internet of Things - IoT) é um paradigma no qual os
dispositivos estão conectados à Internet e podem interagir uns com os outros, realizando um
cenário de comunicação máquina a máquina. Os ambientes de IoT precisam de escalabil-
idade, comunicação padronizada e requisitos de reconhecimento de contexto para obter o
gerenciamento de dispositivos conectados com segurança e precisão em ambientes reais. O
gerenciamento eficiente de redes IoT exige considerar as restrições dos respectivos disposi-
tivos de baixa potência e a complexidade de implantação da infraestrutura de comunicação
subjacente. Um cenário de gerenciamento IoT é representado por um número crescente
de dispositivos conectados, caracterizado por sua heterogeneidade, além dos protocolos e
plataformas de gerenciamento de rede e dispositivos IoT. Um dos desafios das redes IoT
está relacionado à heterogeneidade dos dispositivos, em que cada objeto possui diferentes
capacidades de processamento, memória e tecnologias de comunicação. No entanto, as re-
des IoT geralmente são caracterizadas por dispositivos com recursos restritos e, às vezes,
implantadas em áreas de difícil acesso. Além disso, uma rede IoT pode incluir um grande
número de dispositivos heterogêneos que necessitam ser gerenciados. Todos esses fatores
determinam a necessidade de soluções de gerenciamento adaptadas para dispositivos e re-
des IoT. Para garantir um melhor uso das redes, é necessário um gerenciamento eficaz e
automático. Esta dissertação estuda diferentes soluções para gerenciamento de rede e dis-
positivos num contexto IoT, identificando suas características e desafios técnicos. Com
relação aos protocolos de gerenciamento de rede e dispositivos IoT, a maioria das soluções
tenta resolver o problema de economia de energia e simplicidade devido aos recursos limi-
tados de hardware dos dispositivos. Houve o desenvolvimento de outras soluções adaptadas
para um ambiente IoT, porém os protocolos Simple Network Management Protocol (SNMP)
e Network Configuration Protocol (NETCONF) continuam a ser usados em grande escala
por equipamentos comerciais. Dentre as plataformas de gerenciamento IoT, a plataforma
OpenDayLight obteve vantagem em relação às outras plataformas por ser uma plataforma
modular capaz de gerenciar tanto a rede quanto os dispositivos e por dar suporte aos protoco-
los nativos, nomeadamente, SNMP, NETCONF, Constrained Application Protocol (CoAP)
e OpenFlow. No entanto, atualmente, na literatura, não há plataformas de gerenciamento
que abordem todas as questões relacionadas com IoT. Essas tecnologias foram estudadas e
suas características discutidas em detalhe. Com base no estudo comparativo das soluções
existentes foi proposta e criada uma nova plataforma de gerenciamento IoT com uma in-
terface amigável, chamado M4DN.IoT (Management for Device and Network in Internet
of Things). Essa plataforma modular integra e gerencia as funcionalidades individuais dos
dispositivos em uma rede IoT, bem como o estado e as características dessa rede. Além
disso, a plataforma fornece serviços genéricos, como descoberta de nós, armazenamento
de dados e autenticação, que são requisitos básicos para a criação de aplicativos IoT. A
solução foi avaliada, demonstrada, validada e encontra-se pronta para utilização integrada
na plataforma de middleware para IoT, a In.IoT.

4

Palavras-chave: Internet das coisas; Internet of Things; Heterogeneidade; Gerenciamento
de Rede IoT; Gerenciamento de Dispositivos IoT; Plataformas; Protocolos; Simple Network
Management Protocol; SNMP; NETCONF; M4DN.IoT.

5

Abstract

Internet of Things (IoT) is a paradigm where devices are connected to the Internet
and can interact with each other, making a scenario of machine to machine communica-
tion. IoT environments need scalability, standardized communication, and context-aware
requirements for managing securely and accurately connected devices in real-world envi-
ronments. Efficient management of IoT networks requires consideration to the constraints
of their low-power devices and the complexity of deploying the underlying communication
infrastructure. An IoT management scenario is represented by a growing number of con-
nected devices, characterized by their heterogeneity more network management protocols
and platforms, and IoT devices. One of the IoT network challenges is related to devices het-
erogeneity where each object has different processing capabilities, memory capacity, and
communication technologies. However, IoT device networks are generally characterized
by devices with restricted resources and sometimes deployed in hard areas to reach. In
addition, an IoT network may include a large number of heterogeneous devices that need
to be managed. All these factors determine the need for management solutions tailored
for devices and the IoT network. To ensure better use of IoT networks, effective and au-
tomatic management is required. This dissertation studies different solutions for network
management and devices in an IoT context, identifying their characteristics and technical
challenges. With respect to network management protocols and IoT devices, most of the
solutions try to solve the problem of energy saving and simplicity due to the basic hardware
features of the devices. There are been development of other solutions tailored for an IoT
environment, but Simple Network Management Protocol (SNMP) and Network Configura-
tion Protocol (NETCONF) continue being used on a large scale by commercial equipment.
Among the IoT management platforms, OpenDayLight has gained advantage over other
platforms because it is modular and capable for managing both the network and devices
to support native protocols, namely, SNMP, NETCONF, Constrained Application Proto-
col (CoAP), and OpenFlow. However, currently, in the literature there are no management
platforms that address all IoT-related issues. These technologies have been studied and
discussed in detail. Based on the comparative study of the available solutions, a new IoT
management platform with a friendly user interface, called M4DN.IoT (Management for
Device and Network in Internet of Things), was proposed and created. This modular plat-
form integrates and manages the individual functionalities of the devices in an IoT network
as well as the state and characteristics of that network. In addition, the platform provides
generic services, such as node discovery, data storage, and authentication, which are basic
requirements for creating IoT applications. The solution has been evaluated, demonstrated,
validated, and is ready for use in the middleware platform for IoT, the In.IoT.

Keywords: Internet of Things; Heterogeneity; IoT Network Management; IoT Device
Management; Platforms; Protocols; Simple Network Management Protocol; SNMP; NET-
CONF; M4DN.IoT.

7

Chapter 1

Introduction

1.1 Motivation

Initially, computer networks were created for communicating as a mean of sharing end-
point devices with the same standards of networks, protocols, and operating systems. How-
ever, the fast evolution of networks combined with a reduction of computational resources
costs motivated the increase of computer networks in all the markets [1]. Considering this
scenario, it becomes increasingly necessary to manage the network environment to keep it
working properly. Network management is required to maintain the entire network structure
working, thus meeting the user needs and the administrators’ expectations.

Due to the emergence of Internet of Things (IoT), it is expected an exponential growth
of network endpoint devices (NEDs) becoming a challenge in the areas of infrastructure,
security, energy saving, among others [2]. The continued growth in the number and di-
versity of network components has also contributed to the fact that network management
activity has become more and more indispensable. The benefits of integrating a company’s
computing systems of different nature and sizes as a way of distributing tasks and sharing
available resources are now a reality. For this reason, an efficient data management system
is required by IoT networks so the information is always available wherever and whenever
requested [3].

IoT management presents two scopes: the devices and the network. In each of them,
there is a huge variety of protocols and management platforms to minimize the challenges
(presented in this work). Given the number of existing protocols and platforms, an evalua-
tion should determine which IoT management protocols are capable of efficiently satisfying
the application requirements and which platforms support these protocols for real environ-
ments (real deployment).

Communication between devices performing machine-to-machine communication (M2M),
Wireless Sensor Networks (WSNs) for monitoring and control processes, and the intercon-
nection of WSNs with the Internet are examples of some challenges for managing an IoT
network [4]. Network devices using software-based communication (known as software
defined networks - SDN) gathers, detects, and configures data from sensors, thus creating
the context of managing a network. New technological approaches focusing on IoT are
emerging, as Fog/Cloud technologies [5]. They are compatible with constrained portable
devices and with old management protocols, therefore, being an IoT trending topic. Figure

8

1.1 presents a typical scenario involving different communication technologies and a gate-
way where connected devices collect information from the environment (e.g., temperature,
luminosity, movement, and others) and report data to an IoT management network entity.

One of the most important challenges in this IoT scenario is the network device het-
erogeneity [6] [7]. Devices can support different communication protocols with different
formats and data types, memory and processing capacity [8]. Another important factor is
the data set produced in real time and the implicit semantics imposing challenges regarding
the configuration and infrastructure of IoT environments [9]. An illustration of the hetero-
geneity of medium access control (MAC) protocols for IoT is shown in Figure 1.1.

FIGURE 1.1: Illustration of an IoT Network Architecture and a plethora of
available protocols.

The complexity of IoT network management compared to traditional TCP/IP networks
management is also greater than WSNs [10]. IoT needs to support networking devices
and services that involve i) the use of a plethora of devices with diverse characteristics,
and ii) the IoT networks devices interaction through local or remote management context
aware. WSNs should manage frequent communications failures and low security of wire-
less links (i.e, the MANNA architecture [11]), and this management must also be context
aware. The available IoT management architectures partially attend these features [12].
Then, this dissertation focuses on available policies, approaches, and solutions, including
tools for IoT management. Among the available technologies for management, it was de-
scribed and performs a comparison study considering their heterogeneity, scalability, sup-
ported technologies, security, among others. Based on this evaluation, the most promising
technologies were chosen for a detailed performance evaluation study (through simulation
and deployment in real environments) and the relevant features are used to create a new
IoT management platform, called M4DN.IoT (Management for Device and Network in an
Internet of Things).

9

1.2 Problem Definition

IoT Management systems need scalability, standardized communication, and context-
aware requirements to achieve the management of connected devices with security, and
accuracy in real environments [13]. Interoperability and heterogeneity between hardware
and application layers are also critical issues [14].

Typically, IoT Network Management has complex middleware/platforms that make use
of protocols without a standard to support communication and the integration of the con-
nected device on IoT network management. Thus, the evaluation and comparison of such
platforms and protocols to choose the best technologies is a hard task since they are hardly
comparable as a consequence of their lack of standardization [15].

Considering the above-mentioned issues, this dissertation focuses on IoT-based plat-
forms and protocols for network and device management aiming to select the best candi-
date among platform(s) and protocol(s) for use in real environments. In other words: given
the current scenario of heterogeneity in networks and devices, it must be possible to pro-
pose a new IoT Management solution that should gathers contributions from the best
approaches available in the current management platforms and protocols.

1.3 Research Objectives

The main objective of this dissertation includes the performance evaluation of IoT net-
work management protocols, devices management solutions, and platforms to propose a
solution and corresponding validation in real environments. Thus, it could identify possible
aspects to improve in order to propose and create a new IoT management solution. To attain
this main objective, the following partial objectives were identified:

• Deep review of the state of the art on IoT management protocols and platforms;

• Performance evaluation of available IoT network management protocols and identifi-
cation of possible aspects to improve;

• Proposal and development of a new solution for IoT management to be deployed in a
real environment;

• Performance evaluation, demonstration, and validation of the new solution in a real
environment.

1.4 Main Contributions

The first contribution of this dissertation is the in-depth state of the art review of the Inter-
net of things management platforms and protocols. This review thoroughly analyzed the
architectures and features of the protocols and platforms as well as their associated chal-
lenges and problems. This study is described in detail in Chapter 2. A preliminary review
was published in the Simpósio Brasileiro de Telecomunicações e Processamento de Sinais

10

(SBrT 2017) [16] and a survey paper submitted for publication in an international journal
[17].

The second contribution is focused on the performance evaluation of IoT management
protocols in an IoT real environment with a scenario of a smart lighting monitoring and
management. This performance evaluation study uses qualitative and quantitative metrics
in order to determine the best network protocols for an IoT scenario. This proposal solved
the problem of interoperability and heterogeneity of devices and network management. This
contribution is described, in detail, in Chapter 3, and it was published in a paper presented in
the IEEE International Workshop on Communication, Computing, and Networking in Cy-
ber Physical Systems (CCNCPS 2018), IEEE International Conference on Communications
(IEEE ICC 2018) [18].

The third contribution includes the development, performance evaluation of IoT man-
agement platforms, using an IoT real environment, with a scenario of a smart lighting mon-
itoring and management. The OpenDayLight platform has a modular design and supports
IoT devices management and IoT network management. The OpenNMS is monitoring and
management platform that only provide support of the IoT network management. The plat-
forms (OpenDayLight and OpenNMS) were evaluated according to the packet size, latency,
throughput, and average response time metrics. The experiments and results analysis con-
cluded that OpenDayLight platform is the most suitable and robust for real environments. Its
results were better than the other platforms and hosts both SNMP and NETCONF protocols
natively. This contribution is included in Chapter 3, and was included in a paper presented at
the International Conference on Advances in Computing, Communications and Informatics
(ICACCI 2018) [19].

Finally, the last contribution of this dissertation proposes the modeling, development,
evaluation, demonstration, and validation of a new IoT management solution, called M4DN.IoT.
It is a modular platform that manages the state and quality of the connections between net-
work devices that determine an IoT network management solution. This proposal solved
the problem of standardizing the data format used in communication between applications,
services, and devices. This contribution is detailed described in Chapter 4 and it is included
in a paper submitted for publication in an international journal [20] [21].

1.5 Publications

During this research work, several research papers were prepared. They are listed below.

• Jonathan de C. Silva, Joel J. P. C. Rodrigues, Kashif Saleem, Sergei A. Kozlov,
Ricardo A. L. Rabelo, “M4DN.IoT - A Networks and Devices Management Platform
for IoT”, in IEEE Access Journal, ISSN: 2169-3536 (in press). ISI Journal Citation
Report with impact factor of 3,557 in 2017.

• Jonathan de C. Silva, Joel J. P. C. Rodrigues, Jalal Al-Muhtadi, Ricardo A. L.
Rabêlo, Vasco Furtado, "Management Platforms and Protocols for Internet of Things:
A Survey". Sensors 2019, Volume 19, Issue 3, pp. 676, February 1, 2019, https://doi.org/10.3390/s19030676.

• Jonathan de C. Silva, Pedro H. M. Pereira, Lucas L. de Souza, Carlos N. M. Marins,
Guilherme A. B. Marcondes, Joel J. P. C. Rodrigues, “Performance Evaluation of

11

IoT Network Management Platforms”, 7th International Conference on Advances
in Computing, Communications and Informatics (ICACCI 2018), Bangalore, India,
September 19-22, 2018.

• Lucas L. de Souza , Pedro H. M. Pereira, Jonathan de C. Silva, Carlos N. M. Marins,
Guilherme A. B. Marcondes, Joel J. P. C. Rodrigues, “IoT 5G-UDN Protocols: Practi-
cal Model and Evaluation”, IEEE International Workshop on Communication, Com-
puting, and Networking in Cyber Physical Systems (CCNCPS 2018), in association
with IEEE International Conference on Communications (IEEE ICC 2018), Kansas
City, MO, USA, May 20-24, 2018.

• Jonathan de C. Silva, Joel J. P. C. Rodrigues, Mario Lemes Porença Jr, “IoT Network
Management: Content and Analysis”, Simpósio Brasileiro de Telecomunicações e
Processamento de Sinais (SBrT 2017), São Pedro, Brazil, September 3-6, 2017.

• Jonathan de C. Silva, Joel J. P. C. Rodrigues, Antonio M. Alberti, Petar Solic, Andre
L. L. Aquino, "LoRaWAN - A Low Power WAN Protocol for Internet of Things: a
Review and Opportunities", 2nd International Multidisciplinary Conference On Com-
puter and Energy Science (SpliTech 2017), Split, Croatia, July 12-14, 2017.

• Thiago Santos da Costa, Jonathan de C. Silva, Joel J. P. C. Rodrigues, Ricardo
A. L. Rabêlo, Neeraj Kumar, Petar Solic. "Performance Assessment of Software
Defined Networks Management Protocol in Real Environments". Submitted to an
international conference.

• Jonathan de C. Silva, Flávio B. Brito, Joel J. P. C. Rodrigues, Guilherme A. B.
Marcondes. "Estudos sobre Plataformas de Gerenciamento de Redes e Dispositivos
para Internet das Coisas". Submitted to XXXI Congresso de Iniciação Científica do
Inatel.

1.6 Registered Software

The created IoT management platform, called M4DN.IoT, was registered and its reference
is the following (in Portuguese):

• Jonathan de C. Silva and Joel J. P. C. Rodrigues, “M4DN.IoT – Management for
IoT Devices and Networks”, Pedido de Registro de Programa de Computador - RPC
No BR 512018051860-5, Outubro, 2018.

1.7 Thesis statement

The choice of an IoT management solution is based in a survey focusing on a deep review
of the promising platforms and protocols for IoT management aiming the improvement,
performance evaluation, and deployment on real environments to obtain the device and
network controls when the interoperability and the technological diversity of the connected

12

devices are critical requirements. This relevant features and improvements are considered
to create a new IoT management solution, called M4DN.IoT.

1.8 Document Organization

This remaining chapters of this document are organized as follows. Chapter 2 surveys
the state of the art focusing the on characteristics and analysis of IoT network and device
management platforms and protocols. Open research issues on the topic are identified.

Chapter 3 describes the real environment used for the performance evaluation of the IoT
management platforms and protocols to study the features to propose and develop in a new
IoT management platform.

Chapter 4 includes the architecture and requirements description of the new IoT man-
agement platform (M4DN.IoT). In addition, the evaluation, demonstration, and validation
of the created platform is presented.

Chapter 5 concludes the dissertation, showing the lessons learned, final considerations,
and suggestions for further studies.

13

Chapter 2

IoT Management Protocols and
Platforms

In this chapter, the state of the art on IoT management was elaborated. It presents a deep
study of the related literature on network and device management, and the latest develop-
ments on the topic.

2.1 Background

Computer networks are composed by heterogeneous communication devices and sharing
resources [22]. Computer networks management emerged after a rapid evolution of network
technologies, in addition to a major effort to reduce the costs of computing resources [23].
The offered services range from simple resources sharing to current technology and assume
that every object can be connected to the Internet. This is known to as the Internet of Things
(IoT). Network management goals controlling and monitoring network elements, physical
or logical, ensuring a certain quality of service (QoS) level. To accomplish this task, define
network management as a collection of tools for monitoring or managing devices [24]. The
traditional network management model can be summarized as follows: i) data collection
from monitoring managed resources automatically, ii) diagnosis to analyze and solve iden-
tified problems throughout the monitored data, and iii) action or control to solve a problem
or modify the state of a device [25].

For Kurose et al. [25], a network without management mechanisms can present prob-
lems such as interference in data traffic, lack of data integrity, high congestion rates, re-
sources that can be misused or overloaded, as well as security problems. According to Gab-
durahmanov [26], network management can be difficult for three reasons: i) the managed
network is heterogeneous because it contains hardware and software components manu-
factured by various companies; ii) technology can change continuously with new services
available; and iii) the managed networks are large and the network nodes may be distant
from other nodes.

Kurose et al. [25] states that ISO has created an IoT reference architecture (RA) in
which network management includes five functional areas, as follows: performance man-
agement, failure, configuration, accounting, and security (as shown in Figure 2.1). Per-
formance management intends to analyze, measure, inform, and control the performance
of different network components, i.e., routers and hosts. In failure, the purpose is to log,

14

detect, and react to network failure conditions. The division between fault management
and performance management is undefined [27]. Failure management can occur through
transient network failures, such as the interruption of service on a link or routing software.
Performance management, however, takes a long term approach.

The administrator can know the managed network devices and their hardware config-
urations through management actions [28]. Accounting is intended to allow the network
administrator to specify, register, and control access to users and devices of the network.
Quotas and usage charges for privileged access to the network resources make up the ac-
counting management. According to organization policies defined, the network resources
access is performed with security management.

FIGURE 2.1: Internet of Things Reference Architecture (IoT-RA).

In Figure 2.2, the general architecture of network management systems presents the
following four basic components: elements, stations, protocols, and information on network
management [25]. They are briefly described below.

Agent: The managed elements have a software that allows monitoring and controlling
the equipment through one or more management stations;

Manager: Management station communicates with the agents, either for monitoring
or controlling them. Usually, the management station offers an interface through which
authorized users can manage the network;

Protocol: The standard protocol, used for operations of monitoring (reading) and con-
trol (writing); it is necessary for information exchange between manager and agent devices;

Management information: The management information has the data that can be ref-
erenced for operations by the management protocol, i.e., the managers and agents can ex-
change data to obtain information such as the SNMP protocol [29].

Since the proposal of IoT years ago, many ideas have had three main constraints that
restrict its development [30]: i) proprietary communication protocols, ii) security and pri-
vacy, and iii) inconvenience to manage. Thus, the work focuses on network and device
management and if it is feasible to address management constraints.

15

FIGURE 2.2: Components of network management systems.

Due to the specific characteristics and challenges of IoT, devices cannot be managed us-
ing only the traditional management tools. Thus, IoT management has two categories: IoT
Network Management and IoT Device Management. IoT Network Management is required
to collection and analysis large volumes of data from IoT platforms and, consequently, pro-
vides efficient decisions and/or actions. IoT Device Management is required to provide the
device location and status information, e.g., update embedded software, disconnect some
stolen or unrecognized device, modify security and hardware configurations, locate a lost
device, and even enable interaction between devices.

IoT Network Management often needs to adapt the unknown topology of these net-
works by providing device location and status information. Managing services should have
the capacity to disconnect and locate lost devices, modify security settings, delete device
data, and more. Delicato et al. [31] states that management should consider the possibility
of integrating and using the devices not previously planned in the environment opportunis-
tically.

An IoT network environment can have various connected devices in the same network,
such as a health sensor, a control/medical server, a Web report of statistics and a smartphone,
as illustrated in Figure 2.3. Thus, it is important that a management platform enables the
devices to dynamically detect other devices present in the environment to meet the require-
ments of the applications.

The main difference between WSNs, AdHoc networks (MANETs), and IoT networks
is the characteristic of heterogeneous devices and topologies performed by these networks
[32]. All the time, new devices compose these networks, therefore, the IoT management
platforms require a customized module (driver) to translate device functionality into the
platform. Some platforms for WSN and AdHoc networks can be used in IoT networks.

16

FIGURE 2.3: Illustration of an IoT network environment.

IoT management solutions must meet some requirements [12]. For example, there must
be interoperability between platforms and network devices. The platform must obtain the
connected devices dynamically through discovery and management. A solution should be
context-aware and support scalability (considering indications of intensive usage). Secu-
rity and dynamic adaptation should keep data integrity and privacy guaranteeing devices
availability and QoS.

Existing IoT management platforms, however, only partially meet these requirements
[12]. Due to lack of standardization, IoT management needs to specify data and information
models, in which these models are used to define a format for storing and deploying other
management services. In addition to the above requirements and other aspects such as
security, authentication and authorization, there are characteristics in the scope of local and
global management which are discussed in [33].

In the IoT reference architecture [34], network management includes functional com-
ponents. Configuration (self-configuration) is responsible for initializing system configu-
ration, i.e, collect and store the device configurations, tracking configuration changes, and
planning future extensions.

The self-aware component, Failure, identifies, isolates, recovers, and records failures
in an IoT system. For each occurrence of a failure, a notification is sent to the Failure
component with the objective of collecting more data in order to identify the type and degree
of the problem.

Member is responsible for monitoring and recovering members. This component allows
recovering members of the system while obeying a certain filter and allows the subscription
to receive updates of register/unregister member meta-data in the database.

Report refines and maintains the history of the information provided by management
devices, e.g., to determine the efficiency of the current system through the collection and
analysis of performance data.

State goals self-monitoring of the IoT system with the past, present, and future devices
states. It is required by the Failure component, having the functions of changing or applying

17

a particular state in the system. It also checks the consistency of commands provided for
this function and monitors the state, which makes it possible to predict and update the state
for a certain time or to recover the state of the system through a history.

2.2 IoT Network Management Protocols

The section elaborates on the most relevant IoT network management protocols consider-
ing the Simple Network Management Protocol (SNMP), Network Configuration Protocol
(NETCONF), Open vSwitch Database (OVSDB), Internet of Things Platform’s Infrastruc-
ture for Configurations (IoT- PIC), IEEE 1905, and LoWPAN Network Management Pro-
tocol (LNMP).

2.2.1 Simple Network Management Protocol (SNMP)

The objective of the SNMP is to find and fix the bugs or problems of a network [35].
Through SNMP agents, the network administrator can view network traffic statistics and
is able to change its configurations after analyzing this data. Defined at the application level
and standardized by the IETF [36], the SNMP uses the User Datagram Protocol (UDP)
transport protocol to send messages over the network without delivery guarantee.

Over the last years, other protocols have used the same concept, e.g., NETCONF was
created to replace SNMP. The SNMP continues to dominate the network management mar-
ket, mainly because of its simplicity of implementation, since it consumes fewer network
resources and processing, which allows the inclusion of very simple equipment. According
to SNMP Research International et al. [37], there was an incremental development of three
versions of the SNMP, as described below:

- SNMPv1: it offers a management solution with low cost and simple implementation,
but with a lack of authentication and security mechanisms and limitation in the performance
of messages in very large networks.

- SNMPv2c: it created the management of decentralized networks, allowing the exis-
tence of more than one management station and, consequently, the exchange of information
between them. In SNMPv2, it was not possible to reach a consensus regarding the secu-
rity standard to be used in SNMP, and there was an addition of other request types such as
getrequest, get-next-request, set-request, response, and snmpV2-trap.

- SNMPv3: it published a set of documents defining a framework to incorporate security
features into full capacity (with the SNMPv1 or SNMPv2 features). The SNMP architec-
tural model includes a management server and network devices. Servers monitoring and
control the network devices with events. The network devices include equipment as hosts,
gateways, terminal servers, that have managing agents used to be handled by a server. The
SNMP protocol is used to exchange data between a server and network devices.

Figure 2.4, shows some of the possible interactions between manager and agent through
the SNMP protocol [38]. An SNMP device can be connected to other devices, performing
machine-to-machine communication [39].

The SNMP Agent is a software installed in a device to support network management.
It answers the queries from SNMP managers and sends a trap message to some events

18

FIGURE 2.4: Illustration of the SNMP Protocol Architecture.

(according to their priority). The Management Information Base (MIB) is a virtual database
with object identifiers (OIDs) organized in a tree structure to keep information about device
management in a communication network.

The ASN.1 (Abstract Syntax Notation One) notation [40] is a language developed by
ITU-T and chosen by ISO for the definition of the MIB manageable objects. It uses object-
oriented concepts to define a resource, so that its attributes can be performed by this re-
source, when applicable.

The SNMP is a non-connection-oriented protocol does not require a prior or subsequent
action to send messages. So the protocol messages will no guarantee the destination is
reached. It is a simple and robust protocol, yet powerful enough to solve the difficult prob-
lems presented by managing heterogeneous networks such as an Internet of Things network,
as shown in Figure 2.5. Therefore, the key problems to manage the sensors in IoT involves
the MIB design and the development of manager and agent software.

FIGURE 2.5: Illustration of the SNMP protocol for IoT devices.

Use Case

The SNMP protocol is a base unit that provides a centralized platform for operations and fa-
cility management teams to monitor sensor conditions and configure threshold-based alerts.
It aims to monitor and collect data from environmental sensors and to integrate data from
equipment such as generators and other devices enabled to integrate with intelligent sensors
through SNMP, as demonstrated by OpenNMS, which is an open source platform [41].

19

2.2.2 Network Configuration Protocol (NETCONF)

The NETCONF is a protocol for network configuration and monitoring, as defined by the
IETF [42] and, therefore, has better features than the SNMP, which had as its weakest point
the absence of network configuration resources, i.e., the interface BER (Basic Encoding
Rules) and proprietary MIBs. The NETCONF protocol was developed to be the natural
successor to SNMP, because SNMP is focused on monitoring and not on network config-
uration while NETCONF uses mechanisms that allow the installation, manipulation, and
removal of network device configuration through a client-server implementation, as shown
in Figure 2.6.

FIGURE 2.6: Illustration of the NETCONF Protocol for IoT Architecture.

After establishing the secure transport session between client and server, the NETCONF
protocol sends a HELLO message to announce the protocol capabilities and supported data
models. NETCONF also supports the subscription and receipt of event notifications asyn-
chronously as well as the partial closing of a current configuration of a network device. This
feature allows multiple editing sessions, streamlining the configuration process. NETCONF
allows monitoring and management of an autonomous entity (the NETCONF manager) that
uses the repository of data, sessions, closings, and statistics available on the NETCONF
server.

The NETCONF protocol transports this information to an application manager, who can
infer the required settings for the network devices. YANG is a formal language with clear
text of the data model with syntax and semantics that allow the construction of network
applications [43]. The YANG model can be translated into an XML (Extensible Markup
Language) or JSON (JavaScript Object Notation) file, structured in a tree for each module,
with properties that correspond to the functionalities of the device and declarations of types,
data, constraints, and additions of reusable structures.

Heterogeneous networks are characteristic of the Internet of Things, and the NETCONF
protocol is used to efficiently manage and resolve issues of this network. Most operating
systems developed for IoT [44] such as TinyOS and Contiki OS already have the NETCONF
protocol built into their operating system.

20

Use Case

Currently, most vendors, e.g. Cisco, already use the NETCONF protocol on their equipment
as a standard model. Another example, the OpenFlow devices controller communicates with
connected devices in an SDN architecture, also defining a protocol for such communication.
The OpenFlow provides means to control network devices using NETCONF, without the
need for manufacturers to expose the code of their legacy products [45].

2.2.3 Open vSwitch Database (OVSDB)

Open vSwitch Database (OVSDB) is a management protocol in a software-defined network
(SDN) environment [46]. Most network devices allow remote configuration using legacy
protocols, such as SNMP. The goal of OVS consists in creating a modern programmatic
management protocol interface – OVSDB.

FIGURE 2.7: Illustration OVSDB Protocol for IoT Architecture.

According to Figure 2.7, the OVSDB management protocol handles Open vSwitch
(OVS) that consists of a database server (OVSDB Server), a virtualized switch (OVS Switch)
and, optionally, a module for fast-path forwarding. Each OVS is managed by, at least, one
manager. An OVS module supports several data paths referred to as “bridges”, where this
controller uses OpenFlow.

The OVSDB protocol executes the configuration and management operations on the
OVS instance. OVSDB is used to create/delete/modify bridges, ports, and interfaces. The
OVS represents an evolution of network management protocols, allowing programming
and configuring bridges, ports, and interfaces for SDN equipment platforms and Network
Functions Virtualization (NFV) [47].

21

Use Case

The open source OpenDaylight platform for Software Defined Networking (SDN) uses open
network management protocols, i.e. SNMP, OVSDB, and NETCONF to provide modular
functions, extensible control, and network device monitoring [48].

2.2.4 Internet of Things Platform’s Infrastructure for Configurations (IoT-
PIC)

The IoT-PIC allows network management to perform the platform commissioning installed
in the network. The IoT-PIC architecture is similar to the SNMP protocol described in
section 2.2.1, as shown in Figure 2.8. It has the possibility of performing any configuration
or composition of hardware and software resources.

The IoT-PIC architecture have two levels, the global and local, and it is composed by
two components, in which the communication among these components is made through
the XMPP protocol [49]: an IoT-PIC Manager (PIC-M) at a global level and an IoT-PIC
Agent (PIC-A) at a local level.

FIGURE 2.8: Illustration of the IoT-PIC architecture.

The XMPP protocol is an open-source IETF standard protocol based on XML for net-
work management in IoT contexts, which allows real-time messaging, the information ex-
change and request/response services. The XMPP performance of latency, scalability, and
robustness has been widely demonstrated during the years [50].

The PIC-M module is used to manage the configuration and access of the other modules
to the platform. It interacts as an interface to applications and other platform components.

The PIC-M functionalities consist in notifying the applications on the status of the de-
vice available in the middleware, requesting configuration information from the PIC-A via
“get” and “set”, through an XMPP command, and updating the configuration of devices
through PIC-A via XMPP.

The IoT-PIC uses the publish-subscribe, in which subscribers only receive messages of
interest, without information on the publishers, which allows the complete decoupling of
the devices. Each platform is associated with a PIC-A and responds to the management

22

of the PIC-M device. The configuration and interconnection of devices are assigned to the
PIC-A, e.g., adding and removing the connection.

The IoT-PIC deploys the discovery functionality of devices through the XMPP proto-
col. New devices connected are automatically registered to the network, describing their
functionalities with a common format [51]. Particularly, in the proposed solution, when a
new device connects to the network, the manager of this network publish-subscribe joins in
PIC-M for all discovered resources.

A resource example is a sensor that measures humidity and temperature. Context Man-
ager can create location-related nodes where devices can enter their location allowing nav-
igation of the tree from the root. First, the PIC-M creates a collection node with a given
device id, containing two nodes, in which the first node has the temperature function and
the second node has the humidity function. The resources of the nodes used in the service
discovered by PIC-M are associated to the resource types list, i.e. Humidity Sensor and
Temperature Sensor. The functions of the nodes are associated to the operation list, i.e.
getTemperature and getHumididity. This list creates the entire hierarchy of nodes and, if the
user does not indicate the parameter, the entire list is returned.

Use Case

The IoT-PIC is used in an energy efficiency scenario. The IMPReSS platform [52] includes
energy saving and alarm system applications to allow sensor, lights, and smart plugs into the
platform. In order to save energy, the Energy Saver manages the light through the PIC-M
and tells the PIC-A of the lights management component to publish/subscribe node of the
device in order to receive its events; e.g., in a classroom, detects motion sensor if a row of
seats is empty, in which case the lights are automatically switched off.

The GUI interface converts the XML returned by response of the PIC-M into a user-
friendly form. This platform allows integrating new devices without need modifications to
the deployment environment.

2.2.5 IEEE 1905

IoT environments depend on several MAC protocols. The challenge of interoperability
between technologies needs to be discussed. IEEE 1905 is a standard focused on the con-
vergence of digital home network and offers an abstraction layer to all these heterogeneous
MAC protocols.

The goal of IEEE 1905 is to define a common standard that establishes home network
technologies for a data and control service access point. Each interface can transmit and
receive packets, regardless of underlying technologies or layers, as shown in Figure 2.9
[53].

An intermediate layer used to exchange messages (Table 2.1), is called Control Message
Data Units (CMDUs), with all standards compatible devices. In Figure 2.10, all the IEEE
1905 deployed devices with Abstraction Layer Management Entity (ALME) protocol have
neighbor discovery, topology exchange and rules, measured traffic, and security associations
following the layers presented.

23

FIGURE 2.9: Illustration of the protocol structure for IEEE 1905.

TABLE 2.1: Exchanged messages at the Abstraction layer.

Exchange messages Description
ALME-GET This message is used by the

HLE’s to get a description of
the HLE’s device.

ALME-SET This message is used by the
HLE’s to send a configuration
of the HLE’s device.

The protocol introduces an intermediate abstraction layer to the logical link control
(LLC) and one or multiple media access control (MAC). The service access points (SAPs)
holds many networking technologies, in order to support advanced network management
features like auto-configuration, quality of service (QoS), path selection and discovery. This
layer simplifies setup, e.g., by eliminating the need for a user to enter different passwords
to access each link [54].

This ALME SAP entity is capable of providing management services to MAC, physi-
cal layer (PHY) and higher layer entities (HLEs) [55]. It also provides advanced network
management features including discovery and interface selection.

Use Case

nVoy is an application of the IEEE 1905 standard program [56] that provides the services
to maximize and simplify the overall performance of a home network. The reliability is
provided through the abstraction layer to established power line, wireless, coaxial cable and
Ethernet home networking technologies - IEEE 1901 / HomePlug R© AV, Wi-Fi, MoCA R©,
and Ethernet, allowing to provide common setup procedures for establishing connected
devices, secure links, and network management.

24

FIGURE 2.10: IEEE 1905 standard network management architecture.

2.2.6 LoWPAN Network Management Protocol (LNMP)

The LNMP is a management architecture suitable for 6LoWPAN networks [57]. With
LNMP architecture is possible to reduce the cost communication and, therefore, increasing
the lifespan of the network. The LNMP main characteristic is to allow interoperability with
SNMP. In terms of communication and complexity, the SNMP is considered impracticable
due to the limited device’s resources.

This architecture (Figure 2.11) allows the discovery of devices in a network with help
of the coordinators in the monitoring and management. The SNMP is an application layer
adapted protocol to run over IPv6, so uses this protocol to the adaptation layer 6LoW-
PAN[58]. The popular solution NET-SNMP [59] includes the adapted IPv4 and IPv6 for
IoT network.

Exists two successive management operations that entities within the 6LoWPAN per-
formed. First, Network Discovery is executed to monitor the device state in the architecture.
The second step, after discovered devices, is the management of available devices.

To discover “live” devices manually, intense use of the resources is needed, and thus, the
Network Discovery is a procedure created for an automated network state discovery, which
is necessary given the WSN characteristics for their continued deployment. In this proposal
[60], the network discovery uses the automated monitoring of the network state distributed
by a 6LoWPAN network. The coordinators responsible to maintain the information about
device state and reporting of subordinate devices has the device discovery feature. Band-
width is a scarce resource in a sensor network and this feature reduces communication costs.
The sensing and processing are usually lower than the communication cost.

It is desirable to monitor the device’s status within the 6LoWPAN in a standard manage-
ment protocol, e.g., SNMP protocols. However, the bandwidth available is a factor limited
for application layer payload [61]. Therefore, SNMP is inviable due complexity of transport

25

and communication into 6LoWPAN networks. Nonetheless, the reuse of network protocols
is a goal of the 6LoWPAN, especially because of the interoperability of devices with SNMP.
The SNMP message is translated to a UDP-based query when arrives from an NMS. It con-
tains identifiers objects that are retrieved by the device agent. Likewise, these objects are
translated to SNMP format when arriving at the gateway.

FIGURE 2.11: Illustration device level monitoring procedure for LNMP
Protocol.

The data validity is the most important consideration to management architecture. The
performance of the network management can be calculated with query-response delay and
the increasing number of nodes. Likewise, another way is analysis the computation over-
head with query load. The reliability introduces a delay of 25ms to a query and reaches up
50%. Queries with five hops proposed a delay of 100ms or more gave 100% reliability.

Use Case

In this proposal [60], the Internet Lab Ajou University deployed an agent application over
the 6LoWPAN and a PAN coordinator connected to the gateway with PPP interface. The
6LoWPAN environment composed of a gateway and IEEE802.15.4 devices, containg a PAN
coordinator. The devices support Hilow [62] routing protocol. The device management
agent access to 802.15.4 information base, 6LoWPAN MIB, and IP MIB reduced.

2.3 IoT Network Management Platforms

This section describes the most relevant IoT network management platforms. IMPReSS,
OpenNMS, OpenDaylight, and Zabbix were considered on this study.

2.3.1 IMPReSS

The IMPReSS project is a partnership between the European Union and Brazil (EU-Brazil).

26

The goal of the project was to provide a development platform that allows low-cost
development of IoT complex systems and facilitates interaction with users and external
systems [52]. The IMPReSS project ended on March 31, 2016.

The IMPReSS development platform can be used by any system that adopts the Smart
Society context. The demonstration and validation of the IMPReSS platform will be carried
out on energy efficiency systems to reduce the use of energy and CO2 emission in public
buildings. One contribution will be the inclusion of intelligence in monitor and control
systems, as well as the stimulation of user awareness in reducing energy expenditures. For
the configuration management, the PIC-A exposes two ad-hoc commands, in Table 2.2. The
first command provides a list of management data, in XML format, associated with every
variable, i.e., the type, the current value, and a list of values to assign. The second command
updates values associated with a variable when this is writable [63].

TABLE 2.2: Configuration Management Ad-Hoc commands.

Ad-Hoc commands Description
getAvailableDrivers Returns the list of drivers available on the

repository.
getConfiguration This operation is used to get the list of the

current values in the parameters that can
be configured in the component.

setConfiguration Updates the component configuration and
setting the values passed as a parameter.

The application interacts with PIC-M that provides setConfiguration and getConfigura-
tion commands to write and read the configuration in any PIC-A. When setting information
in parameters, the setConfiguration should be called, passing the XML used to insert new
configuration values.

2.3.2 OpenNMS

OpenNMS (Network Management System) open source platform [41] is used to the man-
agement and monitoring of business networks. Developed under the FCAPS (Fault, Config-
uration, Accounting, Performance, Security) network management model, it is distributed
under the GPL license.

OpenNMS is written in Java, in addition to using database PostgreSQL or RRDTool,
specifically JRobin (Java port for RRDTool), and supports Red Hat, Debian, Fedora, Man-
driva, SuSE, Solaris, Mac OS X and Microsoft Windows.

The architecture presented in Figure 2.12 has the features to determine the availability
and latency of services, storage and collecting of data, event management (such as SNMP
traps), alarms and notifications.

It uses two flows for data collection in Round Robin Database (RRD). The first is
through so-called monitors that connect to a network resource and perform a test to ver-
ify if it responds correctly. If this does not happen an event is generated. The second flow is

27

FIGURE 2.12: Illustration of the OpenNMS architecture.

through the use of so-called collectors, which can be collected by SNMP, NETCONF, Java
Management Extensions (JMX), and HTTP.

The generated events are of two types; those generated internally by OpenNMS and
those generated externally by SNMP traps, which are characterized according to their de-
scription and gravity [64].

2.3.3 OpenDaylight

The OpenDaylight (ODL) is an open source Web-platform for network management as
Software Defined Networking (SDN). It uses open protocols to allow centralized control
and network device monitoring [48]. The ODL supports OpenFlow and also offers ready-
to-install modular network solutions. There is support for a wide range of network pro-
tocols, including SNMP, NETCONF, RESTCONF, OVSDB, BGP, PCEP, LISP, and more.
OpenDaylight is slightly different from other controllers because it offers other protocols
such as southbound interfaces, e.g., OpenFlow, BGP, and PCEP. In addition, OpenDaylight
offers interfaces with OpenStack and Open vSwitch (OVSDB).

FIGURE 2.13: Illustration of the OpenDaylight architecture.

OpenDaylight is a micro-service that uses the sharing of YANG-based (NETCONF)
data structures for messages exchange and data storage, as shown in Figure 2.13. According
to Haleplidis et al. [65], through a model addressed to the Model Driven Service Abstraction

28

Layer (MD-SAL), can aggregate any application or function to a service and loaded by the
controller.

2.3.4 Zabbix

Zabbix is an open source tool distributed under the GNU GPLv2 license for network man-
agement. It monitors the network services status as well as servers or other hardware. As
described in [66], it is characterized as being a centralized management system with semi-
distributed monitoring. In Figure 2.14, the organization can be divided into three main
modules.

FIGURE 2.14: Illustration of the Zabbix architecture.

The platform architecture is distributed and consists of a central server in charge of
administering the system and dealing with the interaction between the other two main com-
ponents: i) the “Zabbix Agent” to monitor local resources and applications and send them
to the server, and ii) the "Zabbix Proxy" is an optional part of the Zabbix configuration es-
sential for distributed monitoring [67]. Zabbix proxy collects the data from the hosts and
stores them in a database of their own in order to avoid loss of information if there is a
problem with the communication with the server. The alert system includes three channels
for sending notifications via e-mail, SMS and jabber (currently called XMPP - Extensible
Messaging and Presence Protocol).

29

2.4 IoT Device Management Protocols

Device management has two main components: i) Device Manager and ii) Device Agent.
The Device Manager is a system that communicates with devices through multiple manage-
ment protocols and provides individual and bulk device controls. It also manages the device
to block remotely when necessary [68].

According to Zehao Liu et al. [69], the Device Agent is a generic component suite that
provides management of devices and utilities such as: i) communication adapters for HTTP
and MQTT; ii) registration of devices; iii) token management, and iv) type of management
platform.

The managed devices need to maintain and map the device’s identity to their owners.
Thus, it allows management through installed software, enabling/disabling functions, moni-
toring the device availability, and control the security features. Other functions should show
be the location and, if available, locking the device remotely, among others. Unmanaged
devices haven’t any management agent and can communicate with the network. Semi-
managed devices implement some parts of the managed devices, e.g., only feature control,
but not software management [70].

2.4.1 COnstrained networks and devices MANagement (COMAN)

The COMAN Group from IETF [71] proposes Mobile Object (MO) solutions that simpli-
fied MIB, SNMP-based on messages, and CoAP-based management, which could be the
protocol used for management of constrained networks and devices.

In Table 2.3, some device management candidate technologies were identified and de-
scribed:

TABLE 2.3: COMAN - Candidate Technologies.

Technology Description
CoAP IETF has defined a binary protocol, the Constrained

Application Protocol (CoAP), easy to analyze and
specially designed for constrained devices, which is
used with lower-level protocols, but it is particularly
adapted over UDP/IPv6.

OMA-LwM2M OMA Lightweight M2M is a device management
protocol used to M2M networks environment.

OMA-DM OMA Device Management provides functions for
device management. The device management hap-
pens through communication between a server (De-
vice Manager) and the client (Device Agent) using
HTTP transport.

This survey limits the study to CoAP, OMA-LwM2M, and OMA-DM, but there are
several candidates for COMAN technologies.

30

CoAP - COnstrained networks and devices MAnagement

CoAP is an easy to use protocol intended for devices with constrained resources and in
conformation with the Rest Style. It is a specialized web transfer protocol designed for
M2M applications. It was developed to be used along with lower level protocols and has
been used in many IoT candidates along with IPv6 and UDP.

Also, this protocol meets most requirements for COMAN, such as group-based provi-
sioning, capability discovery, support for energy optimized protocols, unreachable devices
and lossy links [71] [72].

FIGURE 2.15: Illustration of the CoAP architecture.

As shown in Figure 2.15, the CoAP architecture abstracts all network elements as re-
sources, called Universal Resource Identifier (URI) [73]. Inside CoAP management fea-
tures, it can detect, with low complexity, if a device is online with a simple CoAP ping and
verify if the server is stateless.

Also, in the fog computing architecture [5], it is possible to see the performance of this
protocol compared to NETCONF and SNMP. This protocol can be used along DTLS (Data-
gram Transport Layer Security) [74].

OMA-DM - Open Mobile Alliance Device Management

OMA-DM provides the management information for connecting devices with the DM tree
model [75], [76], [77] and remotely managing connected devices through the OMA-DM
management protocol [78]. It provides efficient methods to manage connected "things"
in network environments using: i) configuration maintenance and management, ii) con-
figuration of user preferences, iii) fault detection, query and reporting, iv) non-application
software download, v) provisioning, and vi) software management.

The OMA Device Management is divided into DM Server and DM Client devices [79].
The standard format for communication messages and data transports uses the XML format
for the following technologies: physical layers lines or wireless networks (GSM, IrDA,
Ethernet or Bluetooth) and transport layers over Wireless Session Protocol (WSP)/WAP
[80], HTTP [81], OBEX [82] or similar transports, as shown in Figure 2.16.

31

FIGURE 2.16: OMA DM standard management architecture.

OMA DM performs data exchange and device management with XML data through a
DM server/client communication [83]. The OMA DM consists of two phases: i) a config-
uration phase, after authentication enables the exchange of device information through the
user commands (Add, Alert, Copy, Get, and others) sent to the DM Client; ii) the manage-
ment performs the request/response messages (Status, Generic Alert, and Results) between
DM server/client.

OMA-LwM2M - Open Mobile Alliance for Lightweight M2M

The OMA LWM2M enables M2M device management, acting as an OMA-DM succes-
sor using the same protocol, and provides a compact and secure communication for this
management [84]. It provides a sub-layer to allow management of LWM2M Server/Client,
using a CoAP client-server architecture over UDP as a transport layer, as shown in Figure
2.17.

The M2M Service Provider, Network Service Provider, or Application Service Provider
can be hosted by the LWM2M Server that provides a private or public data center [85]. The
LWM2M Client is integrated into a software or device [86]. The LWM2M communication
model [87] uses the CoAP methods (GET, PUT, POST, and DELETE) with bindings over
UDP transport layer.

Use Case

Nowadays, there are several solutions (CoAP, OMA-LwM2M, or OMA-DM) with COMAN
requirements, e.g., energy states, logging, system authentication, peripheral management,
and access controls to the system [71]. Sprint is globally one of the best examples of a
mobile Operator that has made FOTA part of its services strategy.

32

FIGURE 2.17: OMA LWM2M standard management architecture.

It is fully committed to providing FOTA updates according to the OMA DM standards
[88].

2.4.2 Things Management Protocol (TMP)

The Things Management Protocol (TMP) uses the operations get/set, similar to the Simple
Network Management Protocol (SNMP) operations, to enable default interface for commu-
nication between the "things with things" and "things with the applications" [89].

Guiping et al. [90] describes that the motivation for creating TMP was the need to
manage the heterogeneity devices independently. TMP is SOAP-based, as shown in Figure
19, and uses key technologies such as HTTP, XML, and SOA for information integration
and connection application based on independent protocols.

FIGURE 2.18: Illustration of the Things Management Protocol architec-
ture.

33

In Table 2.4, the TMP creates the connection between protocol and transport layer pro-
tocols and includes several operation request/response messages in the protocol, e.g., Get-
InformationObject and SetInformationObject.

TABLE 2.4: TMP Operational Requests/Response Messages.

Operational Messages Functions
GetInformationObject In IoT application, this message is used to

read things information object.
GetNextInformationObject Used to read one or more things information

object next to the current object.
SetInformationObject Used to write one or more things information

object. The value of one thing information
object is written per one operation.

TMP supports three operations: GetInformationObject, GetNextInformationObject, and
SetInformationObject. The basic requirements for operating “things information” are satis-
fied in these operations.

Use Case

The Smart Street Lighting System [91] can be managed remotely using Thing Management
Protocol and some tasks can be automated with the objective of reduction of the power
consumption, which has an ecological implication.

2.4.3 CPE WAN Management Protocol (CWMP)

Technical Report 069 (TR-069) is a specification that defines an application layer protocol
for device management. It was initially published by Broadband Home Working Group and
received the name of CPE WAN Management Protocol (CWMP). CWMP is an IP-based
protocol and uses XML for all messages, as presented in Figure 2.19. It provides transaction
confidentiality over Transport Control Protocol (TCP) with Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) and allows levels of authentication. The protocol uses
Hypertext Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP) based on
web services. The data models standardized and security methods are advantages of CWMP
over SNMP.

This protocol works between CPE (Customer-premises equipment) and the Auto Con-
figuration Server (ACS), achieving better scalability and cost reduction results. Many CPEs
can be managed simultaneously by ACS because the session starts and short times are re-
served for CPE [92]. The security of this protocol depends on ACS [93] [94]. A problem
with this protocol is the scalability of the high volume of CPE for a single ACS. Thus,
there is a proposal of addiction the components of the ACS management architecture using
dynamic grouping, and sub-ACS structure [95].

The ACS can control the CPE through the get and set methods as parameter values. In
the first message, the CPE sends CPE information, e.g., identification, manufacturer, and
serial number to the ACS. Then, ACS sends a request with parameters for CPE to execute.

34

FIGURE 2.19: Illustration of the CWMP Protocol messages.

After receiving all the answers or does not have requests, CPE closes the session. An Inform
message initialize the management session. The client identifies this message, which is con-
firmed by an InformResponse message by the server. Subsequently, the client can request or
assign one or more parameters with a GetParameterValue and SetParameterValue message.
Both messages are committed with a SetParameterResponse or GetParameterResponse and
the parameter values are updated. Finally, a management session is finalized.

Use Case

Incognito ACS is an integrated system to the SAC [96]. It allows to manage copyright of the
subscribers, e.g., group of channels or videos on demand over IP. The SAC authorizes TR-
069 gateway activation and diagnostics. In the gateway it is possible to execute commands
to learn about devices, services, or customer quality. As another use case example, the
COSMOS (CPE Operation Support Management and Optimization System) is a CWMP-
based Operations Support System (OSS) used to provide integrated multi-function which
has an easy to use operating environment. Multi-vendor CPEs (common gateways) are
managed by COSMOS, and this system is described in [97].

2.5 IoT Device Management Platforms

The section addresses the most relevant IoT Device Management Platforms. The follow-
ing solutions are considered: Management for the Internet of Things (ManIoT), Fiware,
ONEM2M, SmartThings, RestThing, Xively, and Carriots.

2.5.1 Management for the Internet of Things (ManIoT)

ManIoT platform allows managing devices that make up the IoT environments [98]. Figure
2.20 shows the applications and sensors installed physically on IoT management environ-
ment.

35

The ManIoT platform takes into account the devices heterogeneity or "things". There-
fore, ManIoT does not require modifications or installations of additional software on de-
vices or applications in user devices. ManIoT accesses the applications through a Web user
interface.

FIGURE 2.20: Illustration of the Management for the Internet of Things.

The ManIoT standardizes the data model and format used to applications, services,
and devices communications. The device’s status (on/off) and the Id (identification device)
are characteristics used to model information. To integration with external systems, the
platform uses popular protocols and data models of the industry, e.g, XML and RestFul
API.

The ManIoT project has two management scopes, Local and Global/Remote. The Local
Manager acts to control events performed by a user or application devices that make up a
particular scenario, for example, turning a water valve on or off. The remote manager
standardizes the actions by users in different scenarios, consumption rates in various areas
defined by the water utility.

Local Management

The local manager acts based on information on the context within a scenario, i.e., the local
manager can control and monitor the events, such as turning a lamp on or off.

The functions performed for each layer, as shown in Figure 2.21, are described below:
• Application Layer: The first layer consists of applications that use data provided

by one or more devices, as well as platform services. Network users access applications
through a web interface, and these applications, in turn, interact with ManIoT using function
calls. Each application requests the platform to perform actions on the sensors based on

36

FIGURE 2.21: ManIoT: Local Management Architecture.

the implemented scenario, e.g., an energy management application requests turning an air
conditioner on or off in order to reduce consumption.

• Service Layer: The second layer is formed by the services that support the applica-
tions and use the abstractions implemented by the drivers to communicate with the devices.
Among the items in this layer are Storage, Scheduling, Authentication, Settings, Commu-
nication, Events, Conflict Management, and Context Management.

• Adaptation Layer: This layer is divided into two parts, the first one being responsible
for standardizing the data and the second for dealing with the specificities of each device.
Each device type has a specific driver that abstracts the specificities of access to its sensors
and actuators, which allows the management of the services in an integrated way.

• Communication Layer: The layer consists of the different device access protocols.
As mentioned earlier, the network may consist of devices that can use different application
protocols (i.e UPnP or proprietary protocol) and different networks (ZigBee, WiFi).

• A Layer of Things/Devices: The last layer has the “Things”. There are two devices
type: the real devices and the virtual devices. The actual devices are sensors and physical
actuators, e.g., an intelligent lamp (actuator), a pressure sensor (sensor). Virtual devices
have already captured information from a server connected to a TCP/IP network, e.g., a
calendar or email service, or a social networking server.

Global Management

The global manager seeks to standardize the actions performed in different scenarios. It has
two layers: Application and Services layers, as shown in Figure 2.22

The global services have the functions as those development in the local scope, as shown
in the second layer of Figure 2.21 and Figure 2.22. Global scope services handle larger
data sets and provide support for more comprehensive applications. For example, in the

37

FIGURE 2.22: ManIoT: Global/Remote Management Architecture.

context of electrical management, the global manager must have the ability to manage pos-
sible power outages in several residences in a neighborhood. The actions defined by the
global services are sent and executed in the devices of the respective local managers, using
a TCP/IP connection.

Use Case

In the Intelligent Lighting Scenario, the lighting of an environment is adjusted with the
presence of people and the existence of natural light. Bulbs are switched conform a person
move in the room. Light intensity is inversely proportional to the amount of natural light.

The ManIoT prototype consumes approximately 0.05% of the bandwidth of these net-
works in the worst case [98]. These values are justified because of the small amount of data
exchanged between the prototype of the local manager and the devices, thus reinforcing the
minimal use of hardware resources.

There were results obtained with scenarios of intelligent lighting and automation of
tasks using appropriate metrics to show the capacity of ManIoT to provide a dynamic adap-
tation and context science to the environment.

2.5.2 Fiware

Fiware is an open cloud platform, illustrated in 2.23, under development and created in an
European FP-7 Project to support future Internet. Considered important to several areas,
the Fiware has a set of generic enablers (GEs) [99]. According to standard IoT-RA (Figure
1.1), only the member function is implemented in Fiware Technologies. The platform of-
fers support to various management protocols and standards. It supports OMA NGSI9/10,
OMA LWM2M, MQTT, CoAP, and IPv6 [100]. The heterogeneous wireless networks have
specific communication protocols to connected devices. Different data encodings make it
difficult to find a global deployment.

The platform, illustrated in Figure 2.23, has a modular architecture that supports several
IoT protocols, in which modules are called IoT Agents.However, the integrators must de-
termine the protocol that will be used to connect and select the IoT Agent correct. The IoT

38

FIGURE 2.23: Illustration of the Fiware architecture.

Manager collects or sends data to devices that use heterogeneous protocols and translates
them to a standard platform, simplifying the device management and integration [101].

Use Case

The Fiware project is used for orthopedics, podiatry, physiotherapists and related health ser-
vices producing prosthesis. This work is time-consuming, cost-inefficient and causes many
inconveniences to patients. The Ortholab aim is to produce advanced scan and manufactur-
ing solutions to the insole sectors. With the Ortholab solution, orthopedists or physiother-
apists will be able to take digital information of the patient’s body part in an easy way and
specify the parameters to 3D printers [102].

2.5.3 ONEM2M

ONEM2M was first released in 2015 and is a partnership project created to establish access-
independent M2M service layers specifications. For the management protocol, it has its
own technology called Device Management (DM) and it is also evaluating the possibility to
implement OMA-DM, OMA-LWM2M or even CWMP [103] [104]. This platform has its
own system and protocols, as described in [105].

Two basic types of entities make up the functional architecture of ONEM2M: AE (Ap-
plication Entity) and CSE (Common Services Entity), as shown in Figure 2.24. Northbound
and southbound connected devices are considered an AE. The AE needs to be aware of
management data protocols or models. Device Management (DMG) enables device man-
agement capabilities in MNs (for example, M2M Gateways), ASNs, and ADNs (for ex-
ample, M2M devices). Connected devices residing in an M2M network are managed by
services provided by DMG. The information obtained from the AE is used for network
administrative actions (e.g. diagnostics, troubleshooting) [106].

The Management Server/Client interface is the Mcc, which utilizes a device manage-
ment technology (e.g. CWMP, OMA-DM, and LWM2M). Device management technology
is used to manage the entities (MN, ASN or ADN, and DMG) and translates requests from
other CSEs or from AEs to the device management technology. The Mcc interface is tech-
nology dependent, as above-described.

39

FIGURE 2.24: Illustration of the ONEM2M architecture.

Use Case

The home lighting use case [107] performs remote control of the lights in a home through
a user’s smartphone in the following manner: i) the lights are deployed and communicate
with home gateway; ii) the home gateway communicates with the cloud platform, making it
possible to control the lights remotely with the smartphone; iii) the cloud platform supports
services to enable the smartphone to control the lights, e.g., discovery, data management,
group management, publish/subscriber and others; iv) the user’s smartphone hosts an ap-
plication used to remotely control the lights, i.e., change light state (ON/OFF), discover
available lights in the house, among other functions.

2.5.4 SmartThings

SmartThings is an open source solution used to build applications and connect with other
devices. It allows new connected applications and supports applications (SmartApps) that
communicate with other WebServices through RESTAPI. The SmartThings architecture il-
lustrates the infrastructure blocks that interact with the devices shown in Figure 2.25. Com-
munication of devices (sensors and actuators) with application is performed by the HUB
entity. The messages are received, identified, and analyzed by a user device on the Device
Handler. The response message is discriminated by JSON in SmartThings events. Smar-
tApp handles devices through events managed by Subscription Management.

Use Case

The SmartThing project is used to optimize simple tasks in daily life. Between the func-
tions used, the following were identified: presence sensors for security and light control,
scheduling of house cleaning, and a sensor to get notifications when mail is received [108].

40

FIGURE 2.25: Illustration of the SmartThings architecture.

2.5.5 RestThing

The RestThing platform [109] is a Web service infrastructure based on REST with the
purpose of hiding the devices heterogeneity and integrate devices into a network. This plat-
form enables developers to build applications accessing physical and Web services, which
are both manipulated by a REST-style interface.

As shown in Figure 2.26, the RestThing elements are: i) applications; ii) RESTful API;
iii) service provider; iv) adaptation layer; v) embedded devices, and; vi) Web resources.

The RESTful API transmitted the data between sensors, gateways and Web applications
using three types of data formats: JSON, XML, and CSV. For access to RESTful objects,
the HTTP protocol operations used are: the GET method, used to retrieve the current device
state; the PUT method, used to modify this device state; the POST method, used to create a
new device; DELETE to remove a device, and, in addition, the LIST method, which allows
all devices connected to the platform to be listed.

Use Case

The Monitor Temperature and Heartbeat application is the user interface in a smartphone
that combines physical and Web resources in the Restful API. The real-time data view
is used to obtain current data from WSNs. The smartphone updates this information by
sending a GET to the gateway. The device number of the temperature sensor is what gets
current internal lab room temperature as used in Smart Health environments [110].

41

FIGURE 2.26: Illustration of the RestThings architecture.

2.5.6 Xively

Xively provides an API for managing data from the sensors/devices through cloud services.
It allows historical data and provides events based on the data generated by sensors/devices.
It was created based on the EcoDiF platform [31], Based on REST principles and Web
standards such as HTTP and URIs. To minimize the incompatibility among different de-
vices, the platform provides standardized interfaces. The data is organized into data points,
streams, and feeds. A feed represents an environment data (i.e. a room) with its data
streams, representing data sent by a particular sensor in that environment (i.e. temperatures
of the monitored environment).

FIGURE 2.27: Illustration of the Xively architecture.

Xively is a commercial and closed source solution [111]. There are little details about
the architecture of this platform, which is shown in Figure 2.27. The sensors send data to
the platform in JSON, XML or CSV formats using the REST API, via sockets and through
the MQTT protocol [112]. However, it is known that there are three ways to manage the
devices connected to Xively. In the first case, through the methods implemented by HTTP,
the GET method is used by a client program to retrieve data from a feed or data streams.
The PUT method is used in the connected devices to send data. In the second case, a socket
can be created to avoid the overhead of opening and closing HTTP communications under
conditions in which too much data is exchanged. In addition, the first two cases allow
the use of the SSL/TLS protocol to provide authentication and data encryption. Finally, the

42

third case uses the publish and subscribe features of the MQTT protocol to send and retrieve
data from devices.

Use Case

A scalable platform that addresses need residential customers and contractors were devel-
oped by SunStat Connect Thermostat, called Watts Water’s SunTouch [113].

The Xively IoT Platform is used to power the remote connectivity of SunStat ther-
mostats, which work with all SunTouch heating products. Furthermore, the Xively provides
nearly instantaneous response times from the devices, while not sacrificing stability and re-
liability that consumers would expect from the heating control device. The Xively platform
developed remote connectivity in the SunStat application, enabling consumers to control
SunStat devices from a web browser or mobile device from anywhere in the world con-
nected to the internet.

Another application is Blueprint [114], that consists of a scalable object directory model
with a fast MQTT-based messaging broker. It has a secure provisioning process, which
supports millions of secure connections between people, devices, and data around the world.

2.5.7 Carriots

Carriots is an IoT platform that manage data devices provided with cloud services, and
that also connects devices to other devices and systems [115]. Therefore, if a system is
connected to the platform, it can also be modeled as a device. From its RESTful API,
Carriots aim to collect and store any data originated from the most diverse devices. The
application engine can guarantee availability to its users no matter the volume of connected
devices. These connected devices are associated with services (i.e., physical devices or
other resources) and all services belong to a project. As shown in Figure 2.28, the logical
architecture of Carriots consists of the following modules: i) Drivers Communication Ser-
vices (REST API and External Communication Module) ii) Tracking (Control Panel, Logs,
and Debug) iii) Interventions (Security, Project, and Device Management) iv) Monitoring
(Business Rules and Event Processing with Big Data)

Data exchanged between devices, connected systems, and the platform can be repre-
sented in two different ways: i) the sensors send data in JSON or XML formats (in a par-
ticular platform format) using the REST API, or ii) through the MQTT message protocol
[116].

The Project and Device Management module contains the projects created by users
and provides device and its software management, i.e. device provisioning, enabling and
disabling devices, and updating firmware. Storing and executing events in the form of
scripts created using the Groovy programming language and using if-then-else rules is the
responsibility of the Business Rules and Event Processing module.

43

FIGURE 2.28: Illustration of the Carriots architecture.

Use Case

Nowadays, cities have the challenge of improving, protecting the environment, decreas-
ing energy use, and reducing CO2 emissions, as well as having to detect and correct any
excesses in light consumption or in water spillage and also control expenses.

Carriots City Life is an IoT platform that works like the city brain. It collects data from
different sensors or information reported by the citizens and mixes it all to better manage
municipal services [117]. It’s a cloud platform that allows people to collect, integrate, store
and analyze all the city data with a global vision.

2.6 Performance Comparison, Analysis, and Open Issues

Main characteristics are based on studied management solutions. A qualitative study is
performed in order to characterize management types and technologies used in the most
relevant management protocols and platforms. Tables 2.5 and 2.6 summarize the main
protocols characteristics considering their standardization resources, data, transport stacks,
among others.

IoT network management protocols (shown in Table 2.5) were originated by the Internet
Engineering Task-Force (IETF) for management of connected devices. The SNMP protocol
was the basis for the creation of other protocols such as IoT-PIC and LNMP. Its simplicity in
data modeling makes it a fast and a simple configuration protocol. NETCONF was created
to be the successor of SNMP using the XML standard for request and response messages.
The secure connection transport on SNMP is relevant because of its ease configuration in
some scenarios. With the emergence of Software-Defined Networks (SDNs), new network

44

TABLE 2.5: Main characteristics comparison of the IoT network manage-
ment protocols.

SNMP/ NETCONF IoT-PIC/ OVSDB IEEE
LNMP XMPP 1905

Standard IETF IETF IETF IETF IEEE
Resource OIDs Paths URLs URLs URLs

Data SMI YANG WSDL JSON WSDL
Modeling
Encoding BER XML XML JSON XML
Transport UDP SSH/TCP HTTP, HTTP, HTTP,

Stack Web API SSL/TLS Web API

management protocols have been proposed, such as OVSDB. It uses JSON technology to
expose its devices and network data for the systematic integration of applications.

TABLE 2.6: Main characteristics comparison of the IoT device manage-
ment protocols.

CoAP OMA DM OMA TMP CWMP
L2M2M

Standard IETF IETF IETF IETF Broadband
Forum

Resource URLs URLs URLs URLs URLs
Data JSON XML, XML, WSDL XML

Modeling JSON JSON WSDL
Encoding JSON XML, XML, XML XML

JSON JSON
Transport UDP UDP UDP HTTP HTTP

Stack HTTPS HTTPS HTTPS Web API SSH/
SSH/ SSH/ SSH/ TCP
TCP TCP TCP

The IoT device management protocols (Table 2.6) were developed with Internet stan-
dards by the IETF. The Transport Layer Security (TLS) protocol and Secure Sockets Layer
(SSL) protocol are used to secure transport of the information in the network as HTTPS and
SSH protocols. In reference to the data modeling and encoding, the OVSDB and COMAN
protocols use current Web technologies, such as XML and JSON, that expose network and
device information to access other applications through an user name and password.

Table 2.7 summarizes a comparison among the most relevant IoT network management
platforms, considering IMPReSS, OpenNMS, OpenDaylight, and Zabbix. Table 2.8 sum-
marizes a comparison among the most relevant IoT device management platforms, consider-
ing Xively, ONEM2M, ManIoT, and other important solutions, regarding several important
protocols and types of management approaches.

45

TABLE 2.7: Main characteristics comparison of the IoT network manage-
ment platforms.

IMPReSS OpenNMS OpenDaylight Zabbix
SNMP X X X

NETCONF X X
IoT-PIC/XMPP X X X

LNMP X X
OVSDB X

IEEE 1905

All the platforms have Web user-interfaces and open source technologies, except IM-
PReSS (which was finalized in 2016). OpenDaylight supports more IoT network manage-
ment protocols compared to other previously researched solutions. Zabbix is a popular
platform for monitoring and management networks and differ in XMPP and NETCONF
protocol with OpenNMS.

Almost all the IoT devices management platforms solved the heterogeneity and security
problem.

No IoT device management platform meets all requirements. Some platforms have a
range of features, but requirements such as interoperability are developed in different ways
on each platform.

Despite attending to most requirements, SmartThings believe that supporting widely
used protocols and Web technologies is enough to mitigate the problem of heterogeneity
devices. However, support for other protocols is an important requirement for Carriots and
Xively platforms. Other requirements (like context-awareness and dynamic adaptation) are
barely discussed. Context-awareness is an approach to the inclusion of semantic data in a
platform, e.g, location and collection time.

Platforms and new solutions are based on the SNMP architecture protocol, as shown
in [120] [121], such as the use of the OVSDB protocol for the SDN architecture and the
XMPP protocol shown in IoT-PIC. SNMP uses more efficient resources thus responding to a
processing request up to ten times faster than NETCONF according to the study presented in
[5] [122] [123]. The OpenDayLight modular platform supports more network protocols for
IoT, such as SNMP, NETCONF, IoT-PIC/XMPP, OVSDB, and additional features. Then, it
can be considered the most promising platform among the studied IoT network management
platforms.

Based on this study, it is concluded that IoT device management is still in an early
stage. The requirements have not been completely explored. Nevertheless, ManIoT and
ONEM2M can be considered the best open source solutions, though ONEM2M supports
a wider range of management protocols. Xively is the best proprietary platform according
to the mapped characteristics. No solution can cover all the requirements of an RA. Thus,
there are open research issues due to divergences between the technologies and approach
researched.

46

TA
B

L
E

2.
8:

M
ai

n
ch

ar
ac

te
ri

st
ic

s
co

m
pa

ri
so

n
be

tw
ee

n
av

ai
la

bl
e

de
vi

ce
m

an
ag

em
en

tp
la

tf
or

m
s

fo
rI

oT
.

Y
O

A
PY

[1
18

]
E

co
D

IF
[3

1]
R

es
tT

hi
ng

Sm
ar

tT
hi

ng
s

IF
T

T
T

[1
19

]
M

an
Io

T
X

iv
el

y
C

ar
ri

ot
s

O
pe

nS
ou

rc
e

X
X

X
X

X
H

et
er

og
en

ei
ty

X
X

X
X

X
X

X
Se

cu
ri

ty
an

d
Pr

iv
ac

y
X

X
X

X
X

X
Sc

al
ab

ili
ty

an
d

R
el

ia
bi

lit
y

X
X

X
X

X
X

X
R

FI
D

X
X

X
X

X
SN

M
P

X
N

E
T

C
O

N
F

X
L

N
M

P
O

V
SD

B
Io

T-
PI

C
/X

M
PP

X
X

X
X

O
M

A
-D

M
X

X
X

X
O

M
A

-L
2M

2M
X

X
X

X
T

M
P

6L
oW

PA
N

X
X

X
X

SO
A

X
X

X
X

X
D

at
a

M
an

ag
em

en
t

X
X

X
D

ev
ic

e
M

an
ag

em
en

t
X

X
X

X
X

X
X

L
oc

al
M

an
ag

em
en

t
X

X
X

X
X

G
lo

ba
lM

an
ag

em
en

t
X

X
X

X
X

X
X

X
R

em
ot

e
M

an
ag

em
en

t
X

X
X

X
X

X
X

X
C

on
te

xt
M

an
ag

em
en

t
X

X
X

X

47

2.6.1 Open research issues on IoT management

After the previous discussion regarding the available management protocols and plat-
forms for IoT, this section identifies open research issues on IoT resources management.
They are presented as follows:

1. Performance evaluation metrics: other performance metrics may be considered for
performance comparison of the available solutions and others that may be proposed by the
community. Thus, a comparative study using error probability, mean response time, and
latency may be necessary to evaluate the performance of a given solution.

2. Energy saving: extending the lifespan of IoT applications in a network is a matter
that may be considered. Connected devices have limited capabilities and should not be
overloaded with high throughput. Thus, there is a need to use simpler and smaller packets
on the network while not overlooking device security.

3. Security: it is a key issue to favor the advancement of IoT. However, due to devices
heterogeneity, each company uses different security protocols. Therefore, standardization is
a security related challenge. Also, as the importance and popularity of IoT devices increases
and people provide more information on the topic, scammers and the most experienced
cybercriminals continue to search new ways to attack and compromise a set of devices.
Consequently, research related to this subject is on the rise in the research community.

4. Real-time management: various types of IoT application domains require high net-
work availability. Health applications, for example, have a critical degree of availability and,
therefore, require real-time management. However, limited device resources and power
savings are related features for a management solution that should not be overhead in its
communication within the network.

5. Interoperability: There are currently several types of devices, protocols, and com-
munication technologies that determine the heterogeneity of an IoT network. These devices
must communicate and inter-operate to provide a network service to users. Some researches
assume that new gateways developed must support several protocols. Furthermore, there is
still research on the low power device network as seen in [124].

6. Scalability: The number of devices connected to the network increases exponentially
and, thus, the scalability of an IoT network is a critical requirement. The solutions found in
literature do not address features regarding scalability. With this, IoT network management
must support scalability due to the great evolution of IoT devices and related technologies.

2.7 Summary

The resources in terms of scalability, interoperability, security, energy savings, and IoT so-
lutions (protocols and platforms) were studied to select the best solution to be evaluated. IoT
network solutions continue being based on the SNMP protocol. The NETCONF protocol
was developed to be the natural successor of SNMP since SNMP is focused on monitor-
ing and is desired regarding management. The support for each platform tries to improve
latency, heterogeneity, scalability, and robustness. The OpenDayLight platform can be con-
sidered the best solution based on the supported protocols, and characteristics described.

This chapter gave an insight to determine the best choice of network management pro-
tocols and IoT platforms for an IoT management solution to depoy in real environments.

48

A detailed description and discussion of the topic was performed. Other research issues on
the topic were also been identified.

49

Chapter 3

Performance Evaluation of IoT
Network Management Platforms and
Protocols

This chapter focuses on a performance evaluation study of IoT protocols and network
management platforms available in the literature. It presents an extensive performance study
to support a decision regarding the most relevant protocol and platform to share information
with the connected devices. These chosen technologies should integrate the IoT manage-
ment platform proposed in this work.

3.1 Experimental Scenario

The typical IoT application architecture can consider three layers. The gateway con-
nect sensor networks with traditional communication networks creating heterogeneous net-
works. The security problems with sensor networks, mobile communications network, and
the Internet are more particular in IoT networks due to privacy protection problem.

In the proposed system, the real environment should emulate an IoT smart light system,
where IoT network management protocols and platforms should be evaluated according
to quantitative and qualitative metrics described below, e.g, request/response time average,
throughput, data rate, security platforms, and traffic manager into server-side to determinate
the standard and most promising technologies to develop.

3.1.1 Hardware and Software Specifications

Generally, a sensor node needs low CPU consumption and energy-saving because it is
a restricted device in terms of hardware and software requirements. Encrypt and decrypt
programs cannot use large storage and high-power. So Encryption mechanism in IoT should
be lightweight [62]. New operating systems are emerging to address requirements, such as
TinyOS [125] and Contiki OS [126]. In Table 3.1, the system requirements used to IoT
smart light system are described.

The high processors must be concentrated on service servers and applications. Platform
servers are responsible for managing this processing, in addition to the safe manipulation

50

TABLE 3.1: System Requirements of Hardware and Software to create the
experimental scenario.

System Platform Sensors Gateway
Requirements Servers

CPU Intel Core 32-bit ARM 32-bit ARM
2 Duo Cortex-M3 Cortex-M3

Clock Speed 3.00 GHz 48 MHz 32 MHz
RAM 2GB 128KB 512KB, 256KB

or 128KB
Operational Ubuntu Contiki OS Contiki OS

System 14.04 LTS
Java SDK Java 7 - -
Security SSL AES-128 AES-128
Protocol MD5 256-SHA2

Communication IPv4 6LoWPAN, ZigBee ZigBee
Technologies Ethernet Bluetooth LE

and availability of devices information. Therefore, the system requirements of these plat-
forms must be greater than devices.

3.1.2 System Architecture

This section describes the proposed scenario and the configuration of the real environ-
ment used to perform the experiments and collect the corresponding results. This model
is important to evaluate the performance of the IoT network management protocols under
study (SNMP and NETCONF). The real environment deployed to evaluate the performance
of the management protocols includes the following equipment: (i) Web platform integrated
with OpenDayLight, (ii) a gateway and, (iii) light, temperature, and humidity sensors.

This IoT network management environment, shown in Figures 3.1 and 3.2, includes a
responsive user interface using the bootstrap framework for the front-end. The back-end
of the application is based on the OpenDayLight platform, together, with PHP language.
OpenDayLight provides the RESTful Web service to manage the network elements through
NETCONF and SNMP protocols supported by the platform. The network follows a com-
mon Internet Engineering Task-Force (IETF) layered architecture for wireless sensor net-
works [11]. It uses the standard IEEE 802.15.4 as physical and data link layers, Internet
Protocol version 6 (IPv6) using 6LoWPAN for identification and sensors connection with
the gateway, IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) as routing
protocol, and the Constrained Application Protocol (CoAP) as the application layer proto-
col for management and configuration of the sensor nodes. Concerning security, encryption
is using 128-bit AES key.

The sensors use the Contiki operating system (OS) [126], and Momote components (us-
ing the CC2650 microcontroller) [127] integrated with a low-power 2.4GHz multi-protocol

51

FIGURE 3.1: Illustration of the real environment system architecture used
to perform the experiments.

FIGURE 3.2: Photography of the real environment scenario used to per-
form the experiments.

radio. The DHT11 sensor monitors the environmental temperature, humidity, and bright-
ness (light). The gateway uses the CC2538 microcontroller [128] from Texas Instruments.
It is used as personal area network (PAN) coordinator and responsible for channeling the
messages from the star topology network to the external network, through a microcontroller
that also runs the Contiki OS.

Figure 3.3 shows the layered architecture of the deployed solution. As may be seen,
users interact with the system and perform management of the network elements through
the services supported by OpenDayLight (ODL).

SNMP or NETCONF protocol is a northbound or southbound device manager that is
capable of being connected remotely to the device’s agent. This device agent exposes its
configuration/operational information for monitoring and controlling one or more device
managers (using SNMP or NETCONF). The device managers (running in the background
at the server) obtain or control device agent resources and make the information available

52

FIGURE 3.3: Illustration of the layered architecture used in the real envi-
ronment.

to ODL through a driver handler that aims to translate various IoT network protocol com-
munication patterns into the RESTful API format supported by ODL.

Figure 3.4 shows the layered architecture of the deployed solution. The application layer
includes a responsive user interface using the bootstrap with ODL and OpenNMS platform.
Both IoT management platforms provide a RESTful Web service to manage the equipment
through NETCONF and SNMP.

The IoT management protocols, i.e., SNMP and NETCONF, are loaded in a north-
bound or southbound device’s agent that is capable of being managed remotely to one or
more devices’ manager. This device agent exposes its configuration/operational informa-
tion for monitoring and controlling by device managers. The device managers (running
in background at the server) obtain device agent resources and turn available the informa-
tion to platforms through a driver handler that aims to translate various IoT network and
devices protocol communication patterns into the RESTful API format supported by ODL
and OpenNMS platform.

3.2 Qualitative Metrics

The traditional qualitative evaluation has certain similar features of the IoT management.
The Table 3.2 contains the features and a detailed description of each metric used to eval-
uate protocols and platforms. These metrics goal to reduce subjectivity and help to select
the promising protocols and platforms to evaluate in a quantitative performance evaluation
study.

53

TABLE 3.2: Qualitative metrics description for IoT Management Proto-
cols.

Qualitative Metrics Brief Description
FCAPS Model Indicate the layers of the network management model:

fault management, configuration management, accounting
management, performance management, and security management.

Popularity The popularity idea is used to measure how well the
protocol is known, disseminated in research and commercially.

Supported The protocols that can be used to communicate with
standard other protocols and they are mandatory to ensure

the interoperability among devices like JSON, XML, and CoAP.
Security Security is a key issue on IoT
Feature and has the intention to increase assume

that device credentials were not compromised.
Maturity The maturity metric represents the maturity of

the development and the amount of users or
equipment using this technology.

IPv6 Support IPv6 allows more users and devices
to communicate on the Internet by using
bigger numbers to create IP addresses.

Models Based Model-Based Design (MBD) is a mathematical
and visual method of addressing problems
associated with designing complex control,

signal processing, and communication systems

54

3.2.1 IoT Network Management Protocols

Qualitative analysis of evaluated protocols presents difficulties due to the fact that there
is no common accepted standard by which comparisons can be performed. The proposed
evaluation uses a number of criteria that intuitively come into mind and are under use in the
topic. Security is a key aspect on IoT management for all systems, due the high quantity
of the devices that can be vulnerable to intrusions [129]. Model type and representation
should have data model flexibility because the management supports a variety of physical
and virtual networks [130] [131]. Thus, the metrics proposed measured a protocol with
more flexibility, security, and maturity to perform the evaluation. Table 3.3 summarizes the
application of proposed qualitative metrics to evaluate management protocols considered in
this study and are described below.

FCAPS Model

FCAPS is an acronym to indicate the layers of the network management model: i) fault
management, ii) configuration management, iii) accounting management, iv) performance
management, and v) security management. Networks faults and problems are found and
fixed in the fault management. In the configuration management, the network is monitored
and controlled, keeping track of hardware and software modifications. For accounting man-
agement, network resources are distributed and departments are charged for their end users
network usage, such as long-distance or bandwidth usage per user. Network congestion and
bottlenecks are minimized in the performance management. Security management applies
equally to both outside intruders and internal users; not all network hackers are from outside

FIGURE 3.4: Illustration of the platforms layered architecture.

55

TABLE 3.3: Qualitative performance evaluation of the IoT Network Man-
agement Protocols considered in this study.

Qualitative SNMP/ IEEE
Metrics LNMP NetConf OVSDB IoT-PIC 1905

FCAPS Model Yes Yes Yes Yes Yes
Popularity Highest Highest High Low Low
Supported SMI YANG JSON WSDL WSDL
standard
Security Yes Yes Yes Partial Partial
feature

Maturity Highest Highest High Low Low
IPv6 Support Yes Yes Yes Yes Yes
Models-Based MIB Yang Open vSwitch XML ALME

an organization.

Popularity

The popularity idea is abstract because attempting to measure how well the protocol
is known, accepted, and disseminated in research and commercially. An alternative would
be to perform a manual Google search using the name of each middleware platform and
manually check if the first results are relevant (according to [132], 91% of users do not
go beyond the first three results). To measure popularity is generally to execute the man-
ual Google search, but exists same tools that help to measure this popularity, i.e., MOZ
[133] and Alexa Page Rank [134]. The Google search considers the user location and pre-
vious browser history when returning results. Thus, the popularity measure was performed
through the Google search with cookies and history of browser cleans.

Supported standard

The protocols that can be used to communicate with other protocols to maximize com-
patibility with devices (i.e., application layer) are listed. The IETF determines some stan-
dard protocols to use in commercial equipment. These standards are mandatory to ensure
the interoperability among devices like JSON, XML, and CoAP.

Security feature

Security and privacy is an essentials aspect of any system, and it seems IoT developers
are relegating it to the second plan, so products can be developed faster. In this metric, it is
assumed that IoT network protocol should ensure data security. Security is a key issue on
IoT (as well as in ICT technologies) and has the intention to increase security and assume
that device credentials were not compromised.

56

Maturity

Kerzner et al. [135] says that maturity can be defined as the development of systems
and processes that are repetitive by nature and guarantee a high probability that each of
them is a success. However, the author makes a restriction stating that repetitive systems
and processes are not a guarantee of success, but increase the probability.

The maturity metric represents the maturity of the development and the amount of users
or equipment using this technology. Development maturity is measured through Full Appli-
cation Lifecycle Management (ALM) with continuous integration and test coverage. When
there are more users or quantity equipment using the protocol or platform, it makes the sys-
tem more mature due to the higher occurrence of bugs found and solved turning the version
more stable.

IPv6 Support

IPv6 is a standard developed by the Internet Engineering Task Force (IETF), the orga-
nization responsible for all the Internet technologies. IETF, anticipating the need for more
IP addresses, created IPv6 to accommodate the growing number of users and devices ac-
cessing the Internet. IPv6 is the Internet’s next-generation protocol, designed to replace the
current Internet Protocol, IP Version 4.

IPv6 allows more users and devices to communicate on the Internet by using bigger
numbers to create IP addresses. Under IPv4, every IP address has 32 bits long, which
allows 4.3 billion unique addresses. In comparison, IPv6 addresses have 128 bits, which
allow for approximately three hundred and forty trillion unique IP addresses. IPv6 offers
other networking advantages. In most cases, computers and applications will detect and
take advantage of IPv6-enabled networks and services without requiring any action from
the user. IPv6 also reduces the need for Network Address Translation, a service that allows
multiple clients to share a single IP address, but it is not always reliable.

In this qualitative metric, the protocol should support complete, partial, or not of the
IPv6 requirement.

Models-Based

The description languages help in the planning, systemic analysis, and resource spec-
ification of the described system. In general, there are tools that allow for the high level
description of a system and its properties. The output of a description language is, most
often, XML or XML-based [136] code that can be used as input in certain parsing software.
Several network description languages (NDLs) exist in computer networks topic primarily
focusing on physical rather than virtual networks [137].

The Network Description Language (NDL) [138] is the most prominent among the rele-
vant proposals. It is based on the RDF language, a metadata data model, part of World Wide
Web (W3C) consortium’s specification for the theoretical description and modeling of Inter-
net resources [139]. Network information is categorized in network topologies, technology

57

layers, device configurations, capabilities, and topology aggregations. NDL allows com-
prehensive this network information. A Management Information Base (MIB) is a logical
information store consolidating entity details, organized in a hierarchical (tree-structured)
manner. Accessing a MIB involves using a Simple Network Management Protocol (SNMP).
The current properties of the managed objects are populated into the MIB information store
by means of specialized software (MIB module).

3.2.2 IoT Network Management Platforms

Based on platforms, the qualitative analysis proposes an evaluation in the following as-
pects: i) security, ii) availability, iii) scalability, and iv) robustness. The platforms evaluated
are open source and provides a Web user interface as pre-condition to enter in this assess-
ment.Security is an important metric due to the platform’s store all the device information
to possible monitoring and controls these devices. The Web application has availability and
robustness principals that are important requirements for an IoT management environment.
This platforms server should be robust and scalable to available the management services at
all moments. Table 3.4 and 3.5 summarizes the proposed qualitative platforms metrics that
are presented below.

TABLE 3.4: Qualitative performance evaluation of the IoT Network Man-
agement Platforms considered in this study.

Quantitative
Metrics IMPReSS OpenNMS OpenDaylight Zabbix

SSL certificate No No No No
Security feature No Partial Partial No

S3P No Yes Yes Partial
Modular-Driven No Yes No No

Maturity Low High High High
Interface IDE Based Web Web Web

Auto-Discovery No Yes Yes Yes
IPv6 Support No Yes Yes Yes

NetFlow Support No No Yes No

TABLE 3.5: Supported network management protocols by IoT network
platforms.

IMPReSS OpenNMS OpenDaylight Zabbix
SNMP No Yes Yes Yes

NetConf No Partial Yes No
IoT-PIC/XMPP Yes No Yes Partial

LNMP No Partial No No
OVSDB No No Yes No

IEEE 1905 No No No No

58

Protocols Network Supports (GPL)

IoT management protocols are responsible for managing and monitoring devices and
networks. Each platform has a number of supported devices and network management
protocols. This metric considers only the open source network (GPL) protocols supported
by the platforms and will be listed later.

Secure Socket Layer certificate

Secure Socket Layer (SSL) Certificate is used to protect important information from
users browsing a Website, preventing it from being intercepted, captured or viewed while
transferring data to the server hosting the application. This protection is created from a
strong encryption key that shuffles the information sent by the user so that it is impossible
to discover the content from within the key and the only place that can unscramble this
content in the server where the SSL Certificate is installed. So any attempt to capture a data
packet becomes irrelevant, even if someone is able to intercept the data, it will be impossible
to read the content.

Security, Scalability, Stability and Performance

The ODL community provides continual improvements across all its projects in the
areas of security, scalability, stability and performance, or "S3P". The testing and integra-
tion groups, along with people from each individual project, work together to run ongoing
experiments that give developers real-time results to see how changes affect S3P. It is con-
tinuing to evolve the development process to ensure that one can understand and monitor
improvements in each one of these four areas. ODL is also working with OPNFV support-
ing a Controller Performance Testing project that would create industry wide performance
experiments for SDN controllers in realistic, large, and automated deployments.

Security is a key issue in focus by ODL. The platform provides a framework for Au-
thentication, Authorization and Accounting (AAA), as well as automatic discovery and
securing of network devices and controllers. AAA have a strong security team and process
to respond to any vulnerabilities immediately. In general, open source software has major
advantages when it comes to security: anyone can find and report vulnerabilities; one can
draw on a wide array of experts and developers across companies to discuss and fix vulner-
abilities; and the community-at-large can see how such issues are addressed transparently
and understand if the issue really has been fixed.

Modular-Driven

This technique separate the functionality of the system through modules, where each
contains the only necessary to execute the aspect of the desired functionality. The elements
defined in the interface are detectable by other modules. With modular programming, con-
cerns are separated, so modules perform logically discrete functions, interacting through

59

well-defined interfaces. Typically, these are also compiled separately, through separate
compilation and then linked by a linker. This facilitates the creation of smaller projects
that make up the entire project, making development and maintenance easier to complete.
The IoT management platforms have modular systems that absorb both network and device
management.

Maturity

Described in the previous Section.

User Interface

The User Interface is a fundamental part of software. It is the part of the system visible
to the user, through which, depending on its characteristics, it can be a useful tool to ac-
complish the tasks, or if poorly designed, can become a decisive point in rejecting a system.
Current interfaces are intended to provide the most "user-friendly" peoples and computer
interaction possible. In this way, it should be easy to use by the user, providing simple and
consistent sequences of interaction, clearly showing the alternatives available at each step of
the interaction without confusing or leaving the user unsafe. It must go unnoticed so that an
user can only focus on the problem that he/she wants to solve using the system. Currently,
the most commonly used Interfaces are the application interfaces for smartphone, but it is
restricted to smartphones only, and the Web interfaces that can be accessed from any device
with Internet connection.

Auto-Discovery

The Auto-Discovery requirement is used to discover new devices in the IoT environ-
ment and registration these devices in a network. The device is inserted in the IoT envi-
ronment scope and this should be able to be discovered and registered within the system.
These functionalities are the responsible of the IoT platforms that manage the devices. This
requirement is determinant for an IoT scenario because the number of devices will grow ex-
ponentially and they do not need to be registered manually, the environment is responsible
for this role.

IPv6 Support

Described in the previous Section.

NetFlow Support

For years, regular monitoring of a network was performed by the SNMP protocol that
delivers an overview of the IT infrastructure; giving network administrators information
about the availability of its components. Today, when the availability and proper working of
a company’s network is crucial for its existence, much more information and sophisticated

60

methods are needed. To get this information, Cisco has created NetFlow, a standard for
collecting network traffic statistics from routers, switches, or specialized network probes.

NetFlow provides information from layer 3 and layer 4 which means IP addresses, ports,
protocol, timestamps, number of bytes, packets, flags, and several other technical details.
It could be easily imagined as a list of phone calls. One knows who communicates with
whom, when, how long, how often etc.; but people do not know what the subject of the con-
versation was. By collecting, storing, and analyzing this aggregated information, network
administrators, security engineers, or operations managers can run proceed several tasks.

3.3 Quantitative Metrics

Qualitative analysis of examined platforms presents difficulties because there is not a com-
monly accepted standard by which comparisons can be performed. The proposed assess-
ment approach uses some criteria such as (i) security, (ii) availability, (iii) scalability, and
(iv) robustness. Table 3.6 summarizes the proposed quantitative metrics for the protocols
and platforms evaluation.

TABLE 3.6: Quantitative metrics description for IoT Management Plat-
forms.

Quantitative Metrics Brief Description
Packet Size Packet size sent from the source

to the destination.
Latency This metric focuses on latency of

request / response messages to
IoT management, in seconds.

Throughput Throughput is the rate of
successful message delivery over

a communication channel.
Average response time It is the average response

time (ms) of the IoT platform, especially
in high load scenarios is crucial

Error percentage The server can deal with the incoming
load without experimenting errors

3.3.1 IoT Network Management Platforms and Protocols

The conditions for a fair comparison among the platforms should consider the same char-
acteristics across all the studied aspects. The platforms are purely software, that means that
hosting machine will have the same available resources (memory, processing power, disk
space, etc.). In practice, this means that, with more resources, the local instance can perform
better in comparison with fewer resources. Quantitative comparisons are easily translated
into numbers and graphs. They are describe below.

61

The quantitative metrics proposed to evaluate the performance of management plat-
forms are the following: (i) packet size, (ii) error percentage, (iii) variation of response
times, (iv) latency, and (v) throughput.

Packet Size
The packet size can even aid in load balancing of the scenario. The devices are using IEEE
802.15.4, which supports transfer rates between 20 and 250 Kbps [140]. Most of the energy
consumption in devices is due to communication. Therefore, knowing the packet size that
is necessary to communicate, devices can better manage critical resources such as battery
level and, in advanced cases, they can even plan the time intervals to transmit. Analyzing
packet size, it is important to remember that REST communications usually have a response
message that should also be accounted.

Latency
The challenge with IoT devices is that they run on batteries. In order to preserve the lifespan
of batteries, IoT devices systematically wake up from sleep mode to retrieve new informa-
tion. The longer the device is asleep, the less power it consumes. This also means that there
are fewer opportunities for information to be exchanged. This impacts the performance of
the device, causing it running slower (known as latency). In today’s devices, low power
consumption and low latency are in conflict with one another. Because of the advent of
IoT technologies, however, finding a low-power and a low-latency solution is of the utmost
importance.

Throughput
Throughput refers to the performance of tasks by a computing service or device over a
specific period. It measures the amount of completed work against time consumed and
may be used to measure the performance by a number of simultaneous users and appli-
cation/system responsiveness. Similarly, for network communications, throughput in IoT
networks is measured by calculating the amount of data transferred between locations dur-
ing a specified period, generally resulting as kilobytes per second (KBps), megabytes per
second (MBps), and gigabytes per second (Gbps).

Average response time
Response time refers to the amount of time that a software needs to process information.
This average time is calculated with request and response time among IoT management
platform and connected devices. Response time can be critical depending on the scenario.
In this case, response time can be the round-trip time (RTT), in milliseconds. In high load
scenarios, where a significant amount of data is sent to a server, the response time is crucial.

Error percentage
IoT management platforms will eventually handle a high amount of data due to the expo-
nential growth of the connected devices. In a real scenario, many devices requests will be
forwarded to the platforms that will be processed and sends response messages to devices.
These platforms should be robust and always available. Resending those requests consume

62

much energy in devices and overload of the network causing congesting. A viability crite-
rion stating the maximum tolerated error percentage should be established according to the
proposed scenario.

3.4 Comparison Evaluation of Protocols and Platforms

Based on the main characteristics of the studied management solutions, a qualitative study
is performed in order to characterize management types and technologies used in the most
relevant management protocols and platforms. The experimental scenarios were configured
with 10,000 users requesting management of a real environment of a smart lighting system
using the following metrics: throughput, latency, error percentage, packet size, average re-
sponse time, and others were also evaluated. The GET function is a message to request
information from the devices. In the experiments, the users use OpenDayLight and Open-
NMS to request the GET messages with the startup time of 1s, 5s, 8s, 10s, and 15s, respec-
tively, for SNMP and NETCONF protocols obtaining results through the Apache JMeter
Tool [141]. The corresponding results were collected and compared in order to determine
the most viable platform in different protocols for managing IoT networks.

Figure 3.5 presents the percentage of users request errors occurred for different time
intervals using ODL and OpenNMS platforms.

FIGURE 3.5: Error percentage of NETCONF and SNMP GET request with
10,000 Users for ODL and OpenNMS.

In ODL platform, it is observed that NETCONF and SNMP protocols, practically, do
not have GET request errors in all the considered startup times. Nevertheless, OpenNMS
obtain GET request errors in all the experiments. Thus, ODL is an IoT management plat-
form with a better performance evaluation in comparison to OpenNMS. The relevant reason

63

for OpenNMS having more request errors is the fact this platform has more GET messages
collisions between users when they perform the request with any time interval.

Figure 3.6 presents the latency average histogram occurred for all GET request using
ODL and OpenNMS platforms.

FIGURE 3.6: Latency average histogram of NETCONF and SNMP GET
request with 10,000 Users for ODL and OpenNMS.

In summary, the latency average metric was measured with an average of all GET re-
quests for the SNMP and NETCONF protocols on both platforms. It is observed that the
latency result is approximately of 7 and 10 minutes. For IoT real-time and health scenarios
this value for device management is impractical due to 30% of the GET request with high
latency.

Figure 3.7 shows the results of the experiments considering the user average response
time (in milliseconds) at different time intervals for the platforms under study. This evalu-
ation should be based on the first scenario because the IoT environment needs devices and
network management with lowest response time. In OpenDayLight, NETCONF protocol
has an average response time of 3 seconds while the SNMP protocol has an average of 9
seconds, both for 10,000 users. The OpenNMS supports only SNMP that has an average
response of 5 seconds. Like this scenario, NETCONF obtains an average response time
better than SNMP in ODL and OpenNMS platforms. Therefore, NETCONF is a robust
protocol that does have the desired performance to real-time environments due to its low
average response time.

Table 3.7 measures the packet size of the GET messages NETCONF and SNMP using
ODL and OpenNMS platforms. Using the Wireshark tool, the packet ratio of the IoT plat-
forms were evaluated. It should be performed only by SNMP because NETCONF is not
a native protocol in OpenNMS. In SNMP, there was a difference of the 78 bytes in ODL
packet ratio regarding OpenNMS. It may conclude that ODL platform can deliver the same

64

FIGURE 3.7: NETCONF and SNMP GET average response time (in mil-
liseconds) from 10,000 Users for ODL and OpenNMS.

requests with less loss of packets and energy-saving with a package about 50% smaller than
OpenNMS.

TABLE 3.7: NETCONF and SNMP GET packet message ratio for ODL
and OpenNMS.

IoT Network OpenDayLight OpenNMS
Management Protocol

NETCONF 66 bytes -
SNMP 86 bytes 144 bytes

Figure 3.8 presents the throughput of user requests occurred for different time intervals
using NETCONF and SNMP network management protocols through ODL and OpenNMS
platforms under evaluation.

The ODL presents more throughput in comparison with OpenNMS, but this was already
expected because ODL is a more robust platform. For SNMP evaluation in both platforms,
OpenNMS achieved a performance around 300 Kbps more than the ODL. In more cases,
the throughput information is directly related to the probability of error management due to
the higher amount of throughput, the user average decreases, thus reducing the percentage
of error in GET request for management of the network device. However, in this scenario,
OpenNMS shows higher throughput, but there was more request error percentage because
the platform is not robust and does not guarantee messages delivery.

Based on the obtained results, it may be concluded that OpenDayLight platform is vi-
able for IoT network and devices management in IoT environments with the need to manage
large amounts of data in real-time management with energy savings. On the other hand, it

65

FIGURE 3.8: NETCONF and SNMP GET throughput (in Kbps) from
10,000 Users for ODL and OpenNMS.

presents a disadvantage regarding the throughput because it is a robust protocol where each
frame has more bytes than an OpenNMS frame [142].

3.5 Summary

This chapter presented the results obtained from the performance evaluation study of IoT
management platforms, using an IoT real environment, with a scenario of a smart light-
ing monitoring and management. The OpenDayLight platform has a modular design and
supports IoT devices management and IoT network management. NETCONF and SNMP
protocols were evaluated in the platform. The platforms (OpenDayLight and OpenNMS)
were evaluated according to the packet size, latency, throughput, and average response time
metrics.

The experiments results and corresponding comparison of the studied platforms con-
cluded that OpenDayLight platform is the most suitable and robust for real environments.
Its results were better than the other platforms and hosts both SNMP and NETCONF pro-
tocols natively on the system. The relevant protocols and platform will be used to create a
new IoT management solution.

The OpenDayLight platform should be deployed and controls other real environment
scenarios. Security features such as HTTPs/SSL for the IoT platform can also be considered
in further developments.

67

Chapter 4

Proposal of an IoT Management
Platform for Networks and Devices

In this chapter, the new IoT management platform, called M4DN.IoT, is proposed and
described. The features and requirements that compose this platform are described and
demonstrated through the UML diagrams. The architecture and demonstration of the M4DN.IoT
platform is executed in a real lighting environment.

4.1 Software Requirements Engineering

Initially, it should conceptualize what constitutes requirements engineering: it is a dis-
cipline to develop a complete, consistent, and unambiguous specification that serves as the
basis for an agreement among all parties involved, describing what the software product
will do, not how it will be done. So, system requirements define what the system is required
to do and under what circumstances they will be required to operate [143]. Requirements
are categorized into two major groups: functional requirements and non-functional require-
ments.

• Functional requirements describe the functionalities or services of the system; have a
localized effect because they affect only the part of the system where the functionali-
ties are deployed.

• Non-functional requirements describe constraints or quality attributes related to the
system; fix constraints on how functional requirements will be implemented and have
system-wide effect as their satisfaction affects various components of the system.

Non-functional requirements are characterized by subjectivity, i.e., they can have dif-
ferent meanings for different people; relativity because their interpretation and importance
depend on each system and their realization is relative and interactivity because they interact
with each other, negatively or positively affecting each other. These requirements should to
give objectivity and can be subdivided into the following requirements:

• Usability requirements, which are related to user interface, training material, system
documentation, human factors;

68

• Reliability requirements, which are linked to failure frequency, recover-ability, pre-
dictability, availability of use, the degree of fault tolerance, system scalability;

• Performance requirements related to efficiency, processing response time, use of com-
putational resources, throughput flow, accuracy, availability, resource use;

• Security requirements related to the privacy, integrity, and authenticity of system data;

• Distribution requirements, which relate to the distribution of the executable version
of the system. Distribution requirements are critical for systems with a high volume
of users;

• Requirements for ease of support, ease of adaptation and maintenance, international-
ization, configurable;

• Implementation requirements, resource limitations, languages and tools, hardware,
etc.;

• Interface requirements, restrictions imposed by interfaces with external systems;

• Operations requirements, which are related to the management of the system in the
operating environment;

• Legal requirements, which are related to using licenses;

• Hardware and software restrictions, which are related to hardware and software to de-
velop and run the system include the client platform, server platform, communication
protocol, etc;

• Functional requirement is not a function, it is a functional need (a function) that the
software must meet. A feature will be played by an actor.

Functional requirements are concerned to the functionality and services of the system,
i.e., the functions the system must provide to the customer and how the system will behave
in certain situations, through use-case diagrams, sequencing, and activities as may be seen
in Section 4.2.1.

According to [144], a requirement is a statement about the desired product that speci-
fies what it should do or how it should operate. When directed to software development,
requirements should reflect the purpose of a system as well as the needs of its users, thus
favoring the establishment of bases for the development of successful projects regarding to
cost and quality [145].

4.1.1 Requirements Engineering Process

The process is organized into activities that become inputs and outputs. The description
of the process is an important activity because it allows the knowledge to be reused in
other situations [143], i.e., once someone has faced a problem and this solution has been
documented, this can help other people who pass through the same kind of problem at
another time.

69

Figure 4.1 can translate the process into a diagram of inputs and outputs that would be
represented as shown in this figure [146].

FIGURE 4.1: Requirements Engineering Process: input and output process.

The process inputs are the following:

• Information about existing systems: information about the system features that will
be replaced or systems that iterate with the specified system;

• Organizational standards: standards that are used by the organization and that should
be taken into account during the development of the application, quality management,
methodology, etc.;

• Laws and regulations: legal issues that are external to the system should be observed
so that rules are not violated;

• Domain information: general information about domain application.

On the outputs of the process there are the following:

• Document requirements: this will be a more detailed specification of the system as to
what can be produced;

• System models: are diagrams that describes the system of different angles.

The new IoT management system utilizes a survey as an input process where it verifies
all the existing systems. Regarding organizational standards and regulations, all care was
used due to the application being accessed by an external or internal network (application
domain) of the institution and all the requirements were duly documented.

The system modeling should be presented with Unified Modeling Language (UML)
diagrams in Section 4.2.1 and detailed documented. In addition to this document, there was
also the development of user guide and installation guide documentation.

70

4.1.2 Theoretical Fundamentals of Requirements

In the case of software applied to IoT, in some types of systems the ethnography becomes
difficult for the analyst, given the specificity of the business and the difficulty of devices
currently available [145]. Thus, two theoretical foundations were used to obtain the IoT
management solution and specified below.

Reuse of requirements

Considering the good practices of software engineering, there was the reuse of the generated
knowledge by performance evaluation of the IoT management protocols and platforms. The
reuse of requirements saves time and effort since reused requirements have already been
analyzed and validated in other systems. In this context, the OpenDayLight platform was
reused as an application Back-end since this platform already supported most of the network
and device management protocols effectively as evaluated in Chapter 3.

Prototyping

A system prototype is the initial version of the system that will be evaluated first during
the development process. In software systems, prototypes are often used to assist in the
elicitation and validation of system requirements. Another factor to be considered is the
rapid development of prototypes, i.e., it is fundamental that soon available for the elicitation
process. As benefits of prototyping, the following can be highlighted:

1. The prototype allows users to experiment and discover what they really need to sup-
port their work;

2. Establishes feasibility and usefulness before high development costs have been real-
ized;

3. Essential for developing a user interface that meets the needs of system users;

4. Can be used for system testing and documentation development;

5. Forces a detailed study of requirements, revealing inconsistencies and omissions.

For the development of the new platform, it was used the prototyping method where
through prototypes one can simulate the current operation of the system, and this will serve
as a basis for the customer to feel much more comfortable to criticize, suggest changes, cor-
rections, and the discovery of the need for requirements. The discovery of new requirements
is crucial for the developing system since before that the system would be incomplete. This
software to be developed must be constantly evolving and never be delivered to the client
at the end of the process, i.e., at the beginning only some requirements will be developed
and validated, but later the new prototype will have new interfaces so that the end user can
whether it agrees or not and whether new requirements are not relevant.

71

4.1.3 Requirements analysis

In the requirements analysis step, there are a checklist that must be followed. The first
check is if the project is immature, i.e., if the requirements include premature project or
implementation information, then the combined requirements are observed. It is checked
whether the description of the requirement describes a single requirement or whether it can
be described in several different conditions. Then, a critical analysis is performed to come to
the conclusion of which requirements are actually required and which are not. It should also
be noted that the requirements do not imply the use of a non-standard hardware platform.

It should also be checked whether the requirements are consistent with the business
objectives defined in the requirements document. If there are requirements that can lead
to different interpretations, that is, if there are ambiguous requirements. The realism of re-
quirements must be checked, that is, the requirement is realistic in relation to the technology
used to implement the system and ultimately whether the requirement can be tested.

Functional Requirements

In the Table 4.1, the functional requirements to build the system are described.

TABLE 4.1: Functional Requirements of the IoT management solution
(M4DN.IoT).

Use Case Description
UC 1 User registration
UC 2 User authorities
UC 3 Administrator gateway registration
UC 4 Monitoring and control network information
UC 5 Monitoring and control device information
UC 6 Integrate solution with In.IoT Middleware

UC 1: User registration
The user story contemplates the user can register to gain access to the system. The login

screen for users is also included in this user story.
UC 2: User authorities
In this user story, the user must have different privileges to the system. This permission

is designed by the administrator user. Only the administrator authorities, view (read-only)
should be created at first.

UC 3: Administrator gateway registration
The administrator user must be able to create, edit, and delete a management system

gateway. IPv4 or IPv6 information must be assigned to each gateway for the automatic
identification of devices through management protocols.

UC 4: Monitoring and control network information
The system must monitoring and managing the network according to the user’s request

for the system. Information such as: i) connection status, ii) IPv4 or IPv6 information, and
iii) the supported network management protocols must be available.

UC 5: Monitoring and control device information

72

The system must monitoring and managing the devices according to the user’s request
for the system. Information on energy consumption and turn on/off device must be available
at the first moment.

UC 6: Integrate solution with In.IoT Middleware
A modular solution must be built due to the integration with the In.IoT middleware

system. The end customer must decide whether to use the middleware platform.

Non Functional Requirements

Usability is encompassed within quality and aims to ensure a part of the efficiency and
effectiveness of the system. Efficiency refers to a productive interaction between the user
and the system, allowing tasks to be performed with less effort under a pleasant interface.
Thus, the solution must create an interface to enable the user to complete the task and
achieve their goals in the system in a responsive and user-friendly.

The software must ensure data security as well as access permissions to its features, such
as user password encryption (SSL, MD5, and ECC encryption) and free access to system
menus according to the user hierarchy. When it comes to an IoT solution with confidential
user information, this item becomes indispensable.

There is no point in having a secure, interactive, and reliable system if it consumes a lot
of computer resources and takes time to perform the processing. A slow system is subject
to criticism from users, even if it is functional. Software performance can be improved by
using object-oriented programming techniques, memory management, threads, and code
optimization. Other factors like the use of NoSQL banks due to the "Big Data" concept
where different devices are constantly generating information in an IoT environment are
preponderant issues to improve the performance of a solution.

4.1.4 Requirements Modeling

The M4DN.IoT is a network management platform and IoT devices capable for map-
ping and controlling the connected network and devices. The Unified Modeling Language
(UML) notation should be used as a way to represent concepts of objects and relations of
the application.

The system must perform network parameters assignment and query operations for de-
vices through network protocols and devices such as NETCONF and CoAP. This interaction
must be performed in a standardized way using REST API service.

The user can view the data in a responsive Web platform, i.e., it is automatically re-
weighted according to the equipment used. Platform access can be done on a local or
remote network. The only requirement is to have access to the Internet and a browser. The
smart lighting scenario was used to be managed and controlled through a WEB platform
called M4DN.IoT. This application can be used in a residential environment by turning
on/off according to people present in the room and lighting available.

The use case diagram presented on Figure 4.2, describes the management actions that
the user can perform on the M4DN.IoT platform.

Precondition

1. The user must have logged and authorization from the system.

73

FIGURE 4.2: Use Case Diagram of the M4DN.IoT platform.

Primary Event Flow

1. When a user start the application, the IoT network management is initialized.

2. The user can request the state and quality of the connections.

Second Event Flow

1. When a user start the application, the IoT device management is initialized.

2. The user can request the turn on/off and state devices.

Post-condition

1. The network and connected devices must be managed.

The M4DN.IoT platform does not manage devices that do not have certain protocols
developed, but the development was done in a modular way, i.e., one can create a plug-in
with the proposed protocol for the management of others devices. The main problem is to
create a modular platform with a friendly and responsive user interface in which any device
connected to the network must be managed. The platform and device security requirements
must be considered for development.

The modeling of the solution is demonstrated with the activity diagram in figure 4.3 and
sequence diagram in figure 4.4.

Actors:

1. User and connected devices.

74

FIGURE 4.3: Activity Diagram of the M4DN.IoT platform.

Precondition:

1. The user must have logged and authorization from the system.

Basic Flow

1. The use case starts when the client accesses the system.

2. By clicking on the connections, the system shows information about the status and
quality of the link.

75

3. When a user clicks on the gateway, the system displays information on the number of
associated devices and the supported protocols.

4. When clicking on the device, the system shows device status information, amperage,
voltage and IPv6 address. The user has the action of turn on/off the device.

5. The System sends a message of success or failure of the requested request and the use
case ends

Post-condition:

1. The network and connected devices must be managed.

FIGURE 4.4: Sequence Diagram of the M4DN.IoT platform.

This platform is designed to work independently or in conjunction with the In.IoT [147]
middleware platform as requested by customers.

4.1.5 System Requirements

As seen in Section 4.1, system requirements are a non-functional requirement that makes
up the minimum and recommended hardware and software requirements described follow-
ing..

Minimum Requirements

76

• A Linux Server Ubuntu 14.02 LTS, 64 bits;

• Any CPU (Intel i3 with 3.60GHz recommended);

• 4 GB RAM, 40 GB HDD Free Space;

• Any GPU that is compatible with OpenGL 3.2. (integrated graphics cards Intel HD
4000 or above).;

• Any Browser compatible with HTML 5 and CSS 3.0, e.g, Google Chrome Release
77;

• Java Development Kit (JDK) 7.0

• A tablet or smartphone with Android 4.0 Ice Cream Sandwich;

Recommended Requirements

• A Linux Server Ubuntu 14.04 or 14.06 LTS, 64 bits;

• Any CPU (Intel i5 with 3.60GHz recommended);

• 8 GB RAM, 80 GB HDD Free Space;

• Any GPU that is compatible with OpenGL 3.2. (integrated graphics cards Intel HD
4000 or above).;

• Any Browser compatible with HTML 5 and CSS 3.0, e.g, Google Chrome Release
77;

• Java Development Kit (JDK) 8.0;

• A tablet or smartphone with Android 4.4 Kit Kat.

Table 4.2 summarizes the minimum hardware and software requirements for installation
and use of the M4DN.IoT platform.

TABLE 4.2: System Requirements minimum of Hardware and Software to
installed the M4DN.IoT platform.

System Requirements Platform Server Mobile
CPU Intel Core I3 Snapdragon 210

Quad-core
Clock Speed 3.60 GHz 1.0 GHz

RAM 4GB 4GB
ROM 40GB 16GB

Operational 14.04 LTS Android 4.0
System Ice Cream Sandwich

Communication WiFi and Ethernet WiFi

77

4.2 Proposal of a new IoT Management Platform (M4DN.IoT)

The M4DN.IoT (Management for Devices and Networks in IoT) is a platform for man-
aging the end devices (i.e. momote sensors, for example) and network elements (i.e. a
gateway) that compose several IoT environments [148]. The scenarios of security control
of a residence, the management of a lighting solution, demand side management [149],
among others, can benefit from this application.The platform specifies a data and infor-
mation model with the objective of standardizing the data format used in communication
between applications, services, and devices. The status of the devices (on/off) and the
id (device identification) are examples of features used in the information model for de-
vice management. On the other hand, the state and quality of the connections between
network devices and the devices determine the information model for IoT network manage-
ment. Also, for accessibility and integration with other systems, the platform makes use of
industry-standard protocols and standards for data models, such as NETCONF, CoAP, and
RESTfull API for performance evaluation in this IoT environment [120] [121] [122].

4.2.1 System Architecture

The M4DN.IoT platform was deployed in a prototype for the local or remote man-
agement subsystem [148]. The performance of the proposed solution was evaluated by
employing them in the management of a public/residential lighting scenario. The com-
ponents considered in the platform were the communication patterns (REST API, NET-
CONF/RESTCONF, CoAP, among others) through OpenDayLIght platform thus standard-
izing the data for consumption of other platforms.

FIGURE 4.5: Architecture of the M4DN.IoT platform and its main compo-
nents (used in a real environment scenario).

Figure 4.5 shows the layered architecture of the deployed solution. The application layer
includes a responsive user interface using the bootstrap an AngularJS and NodeJS with the
ODL platform. The database chosen was the MongoDB NoSQL database due to being a
schemaless database, i.e., without fixed schema, that is an important feature to Big Data

78

generated by connected devices. Both IoT management platforms provide the RESTful
Web service to manage the equipment through the NETCONF and SNMP.

Analyzing the characteristics of the devices and the fact that many asynchronous ac-
tions, the software was developed employing a modular approach based on events.

4.2.2 Methods and models of software design

Software design comprises the design, specification, and prototyping of the "external" and
"internal" parts of the software. The external part comprises the conceptual model of the
application and the user interface. The inner part comprises the architecture of software
components and the algorithms and data structures that implement these components. The
diagrams will be used to represent data flow and related entity of the solution.

Data Flow Diagram

The data flow diagram (DFD) is a graphical representation of the data "flow" through an
information system, modeling its process aspects. It provides only a view of the system, the
structured view of the functions, i.e., the flow of data. Often, they are a preliminary step
used to create an overview of the system that can be further elaborated. A DFD shows what
kind of information will enter and exit the system, where data will request and where the
data will be stored.

FIGURE 4.6: Data flow diagram of the M4DN.IoT platform.

79

The user requests a process of management or request information of devices this re-
quest should verify in the database if the information is the most current, otherwise,the
process must request from the network or device that up-to-date information that can be
seen by the data flow diagram, presented in Figure 4.6.

Relationship Entity Diagram

Relationship entity diagrams (REDs) are related to data structure diagrams (DSDs), which
focus on the relationships of elements within entities rather than relationships between the
entities themselves. RE diagrams are also often used in conjunction with data flow diagrams
(DFDs), which map the flow of information to processes or systems.

FIGURE 4.7: Relationship entity diagram of the M4DN.IoT platform.

Exemplifying the entity relationship diagram on Figure 4.7, the system user can manage
several different IoT networks. Each IoT network is able to identify devices with context-
aware. Summarizing, the user will be able to manage the IoT networks and devices.

4.2.3 Languages and Technologies Used

The important point is the technologies that were used for the development of the M4DN.IoT
platform (where this application was developed), i.e., the possibility to use certain applica-
tion modules according to the need of the IoT scenario that will be managed.

Table 4.3 summarizes the technologies used to the development of the platform.
Each technology used is summarized and its operation will be described as follows:
AngularJS is a technology in javascript, open source that is maintained by Google

[150]. Its purpose is to increase applications that can be accessed by a Web browsers and
is modeled by Model-View-View-Model (MVVM) in an effort to facilitate both application
development and testing. Its use in the solution was decisive because most browsers support

80

TABLE 4.3: Technologies used in M4DN.IoT platform.

M4DN.IoT Characteristics Technologies
Front end AngularJS and PHP
Back End NodeJS and REST API

Frameworks Bootstrap and Sigmajs
Protocols NETCONF, CoAP and COMAN DM

3PP Plataforms Supports OpenDayLight
Java SDK Java 7

NoSQL DaaS MongoDB (mLAB)

both javascript and AngularJS. This requirement standardizes the solution for operation in
any commercial browser.

PHP is an open source scripting language that is widely used, especially suitable for
Web development and that can be embedded within HTML [151]. It is used as a tool to
pre-process data that will be available at the Web page.

Node.js is a JavaScript code interpreter with open source focused on migrating client-
side Javascript to servers [152]. As discussed earlier, scalability is one of the important
requirements for IoT management. Its goal is to help programmers to create high-scalability
applications (such as a Web server) with codes capable of handling tens of thousands of
concurrent connections on a single physical machine.

A RESTful API is a method of allowing communication between a Web-based client
and server that employs representational state transfer (REST) constraints [153]. This
method is able to standardize the queries to the IoT management, being possible any ap-
plication consume data of the same.

Bootstrap is the most popular HTML, CSS, and JavaScript framework for developing
responsive, mobile-first Websites [154]. This framework was used to create one application
with support in websites and mobile application. Thus, the system user can access the
application of any device connected to the internet.

Sigma is a JavaScript library dedicated to graph drawing [155]. It makes easy to pub-
lish networks on Web pages and allows developers to integrate network exploration in rich
Web applications. This framework was used to create the network topology of the IoT
management solution.

MLab is a fully managed cloud (DaaS) database service that hosts MongoDB databases
[156]. MLab runs on cloud providers Amazon, Google, and Microsoft Azure, and has part-
nered with platform providers as a service. This database was chosen due to the NoSQL
database schema-free and because it is hosted as a cloud service, thus guaranteeing high
scalability.

4.3 Solution Demonstration and Validation

This section focuses in the demonstration and validation of a new IoT Management plat-
form to validate the use of the new platform in a real IoT environment, the M4DN.IoT.

81

4.3.1 Front-end and Back-end usability

OpenDayLight is the platform with the most support for IoT management protocols.
When there is a need to use another protocol, it can be developed in feature forms on the
platform, shown in Figure 4.8, thus ensuring modularity.

FIGURE 4.8: Illustration of the installation of the protocols.

The OpenDayLight was chosen as the back-end of the new platform. The evaluation of
OpenDayLight and its protocols were described in Chapter 3. Front-end requirements are a
challenge for OpenDayLight because the interface is not user-friendly and it is designed for
users with knowledge in development technologies. Security requirements such as HTTPS
are also issues that were not developed and are mandatory for an IoT management platform.

In Figure 4.9, each device must be added manually by the network manager. Through
the OpenDayLight UI (DLUX), the management must be performed by Yang UI, where the
user must be aware of REST API structure to manage the network devices, as can be seen
in Figure 4.10

FIGURE 4.9: Illustration of the installation of the protocols.

The new platform M4DN.IoT was developed to solve the issues discussed above. Inter-
face requirements have been solved through a friendly and responsive platform, that is, can
be used in any device connected to the Internet.

82

FIGURE 4.10: Illustration of the nodes register in OpenDayLight UI
(DLUX).

Security issues under development are: (i) use of the HTTPS protocol and (ii) develop
the ECC protocol and DTLS over JWT for protocol communication of the network with
devices.

In the next section the operation of each M4DN.IoT functionality will be described.

4.3.2 Main Functionalities and Operation

The platform contains a user registration feature, Figure 4.11 allows user to perform a
query and the registration of new users with the following information: Username, Pass-
word, and Email address, where all the information is mandatory. This feature could be
used or not in the platform, due to the control user access is provided of the In.IoT middle-
ware when integrated [147].

The prototype performs communication between components via management proto-
cols. Thus, the sensors generate information as new entries in the database, and the plat-
form can perform data queries to the inserted data. For example, when the light sensor
reads a new value, the platform inserts that value into the database. The application, in turn,
can read this value and use it to set its operating parameters. The User must register the
Gateways that will be managed by the platform. When they are registered, the M4DN.IoT
automatically finds all the devices interconnected through requests of the NETCONF or
SNMP protocols thought the OpenDayLight platform as a bridge.

The goal of this modular and dynamic platform is to make the centralizing application
fully capable of managing other devices, without making changes to the application. The

83

FIGURE 4.11: User Register at the M4DN.IoT Platform.

M4DN.IoT platform obtains information of the IPv6 gateway and devices, protocols sup-
ported, in addition to other information. Another important requirement, shown in Figure
4.12 is the connection management between the gateway and the Momote, which are rep-
resented in the following colors: i) Green: successful connection status, ii) Yellow: status
connection warning due to response delay of device, and iii) Red: Connection status failed.

M4DN.IoT collects and stores the network information for the managed devices, such as
Device Name, Valid IPv6 Address, Number of connected devices, and Protocols supported
according to Figure 4.12.

FIGURE 4.12: Information from the IoT Network Management at the
M4DN.IoT Platform.

84

Also, the platform can manage devices located by the Gateway. The application can
turn on/off a particular light or fan device. Other relevant information that can be obtained
of the sensors are: i) voltage, ii) amperage, and iii) the status that the device is on or off.

This information can be observed by the Figure 4.13.

FIGURE 4.13: Information from the IoT Device Management showing sen-
sors data at the M4DN.IoT Platform.

In Figure 4.14, it was observed that if we considered a priory the worst scenario with
start-up in 0 seconds, M4DN.IoT obtained about 200 errors in user requests compared
to ODL. This result is due to the amount of layer security and transport used, where in
M4DN.IoT was developed the HTTPs and JSON Web Tokens (JWT) for Rest-Full API.
Another negative point of ODL is that it does not have the HTTPs protocol developed so it
is possible to obtain information with an external sniffer.

FIGURE 4.14: User Request Error of NETCONF request with 10,000
Users for M4DN.IoT and OpenDayLight (ODL).

85

Based on this survey [17], it is concluded that security, context-aware, and the standard
model of messages still in an early stage. These requirements have not been completely
explored. Interoperability and heterogeneity are requirements that have been maintained
from the ODL system and are therefore achievable at M4DN.IoT. Thus, M4DN.IoT was
developed to resolved these requirements. In terms of the security, the HTTPs and JWT
was development to guarantee the frontend and backend security respectively. By using
these security technologies, it was eliminated a large part of the security header that the
OpenDayLight project used. Thus, as seen in 4.14, the number of requests with errors were
smaller in M4DN.IoT compared to OpenDayLight. Another resolved point was regarding
context-aware, where the M4DN.IoT system performs the discovery and management of the
gateway and connected devices automatically. All such communication and information use
Rest API as a standard model of messages.

Currently, the platform is deployed together with the In.IoT middleware platform [147]
in a modular way, that is, it can work together or not with the client’s requesting middleware.

4.3.3 Future Developments

Finally, the relevant requirements for future developments in the M4DN.IoT application are
described as follows.

• Security: Use HTTPS, ECC, DTLS, or other security protocols for the platform to
make reliable;

• The functional and non functional requirements are known issues to future develop-
ment;

• Perform self-acknowledgment and registration of the Gateway in the network;

• Include the platform in other scenarios of real environments;

• CoMI protocol development in M4DN.IoT;

• Integrate the Blockchain resources to resolve security and communication problems;

4.4 Summary

This chapter described the most relevant features and requirements that composed the new
IoT management solution, called M4DN.IoT. M4DN.IoT is a modular platform that man-
ages the state and quality of the connections between the network devices that determine an
IoT network management.

The platform specifies a data and information model with the objective of standardizing
the data format used in communication between applications, services, and devices. The
final result has executed this platform in a real lighting environment.

87

Chapter 5

Conclusion and Future Works

To conclude the dissertation, this chapter addresses the lessons learned along this study,
summarizes the main conclusions, and suggests topics for further research works.

5.1 Lessons Learned

This dissertation analyzed the network and devices management for IoT from different per-
spectives. The lessons learned from this study are summarized hereafter. First, from the
architectural point of view, IoT network management systems is well adopted by IoT ref-
erence architecture and research attempts [4], [9]. However, due to the distinct network
topologies, heterogeneity between connected devices and protocols without a common stan-
dard, there are possible studies to perform in this context. Scalability and interoperability
have importance in IoT applications and some of the studied technologies present solutions
for them [157], [98], [158], [159]. Then, larger studies of recent researches were analyzed
to discover the main challenges and open issues in IoT. Security and interoperability are top
priorities for IoT network management applications, followed by performance, reliability,
and scalability. So, there are some fundamental features that a network management should
provide and they are identified as follows: i) interoperability between the various devices
and platforms available in real environments; ii) dynamic and adaptation security keep data
integrity to guarantee the availability and QoS during execution; iii) context-awareness so
that information of regarding the location and state of network objects is used to perform
actions; and iv) scalability to accept expansion and to operate correctly even in situations of
intense use.

Another important aspect comes from the fact that there are many IoT management pro-
tocols and platforms where each one utilizes different data and standards format. An IoT
environment has customer’s devices with different data models. This is one challenge to
create a new IoT management platform capable of managing customer’s devices. Energy
savings for restricted devices should not be the only relevant features. Network interop-
erability with heterogeneity devices is an important issue for IoT management platforms.
Security is a key issue, due user’s information trafficking on the network and can be easily
breached.

88

Initially, the construction of programming code for the network management protocols
was done to meet only the basic management characteristics. However, during the experi-
ments, it was necessary to adapt the code so that there was a standard data model of com-
munication and devices management, and this used a REST API technology. It was also
necessary to assimilate how to source code compilation and every Momote configuration to
simulate the real lighting environment in a laboratory environment for the development of
management technologies.

Another important technology that helped in the development of protocols was Cooja
[160]. Cooja is an emulator of the Contiki operating system to simulate an IoT network.
Thus, each new implementation was simulated and debugged through Cooja to verify this
new functionality running on the network.

5.2 Concluding Remarks

A large number of IoT devices demands management and control solutions for various ser-
vices. Moreover, the exponential number of connected devices and their inherent constraints
motivate the need for efficient management of IoT networks. Therefore, platforms that in-
tegrate these services are necessary. However, current IoT management platforms only
partially attend the literature requirements. Overall, this dissertation presented the concept
in detail, its enabling technologies, protocols, platforms, and the recent research addressing
IoT management for networks and devices with the goal to create a new IoT management
platform. Among the IoT features, solutions (protocols and platforms) that perform better
in terms of scalability, interoperability, security, energy saving, etc. were studied.

Concerning network management, IoT network solutions continue based on the SNMP
protocol. The support for each platform search for improving the latency, scalability, and
robustness. NETCONF protocol was developed to be the natural successor of SNMP, as
SNMP is focused on monitoring and not on network configuration. The OpenDayLight
platform can be considered the best solution based on the supported protocols. For IoT
devices management, ONEM2M open source approach and Xively proprietary technology
were the evaluation with other technologies. It was observed that ONEM2M and Xively
predict scalability and promote the integration of devices with local/remote management
features remembering always the guarantee the heterogeneity and security.

This dissertation presented an overview of the protocols and approaches used for IoT
devices and networks management where their motivation and technical challenges were
identified. A comparative analysis of the studied approaches to choose the best technolo-
gies used to a new IoT network management platform was presented. The NETCONF
protocol and OpenDayLight platform were used as back-end technologies. This solution
provides requirements for automatic IoT network management and a user-friendly interface
that provide information about the network devices (i.e. IP Address, connection status, and
protocols supported) and connected devices (i.e voltage, amperage, and on/off status). This
platform can be used in any equipment (desktop computer, smartphone, and tablet) and its
access is available in any location.

89

5.3 Future Works

To conclude the study, some relevant future works on IoT management are identified and
are presented as follows.

• Security service provisioning by using SDN network management;

• Business applications in real-time (with edge computing and fog computing using
artificial intelligence contributions);

• Reducing network resources (hardware and bandwidth) and energy savings;

• Compatibility and Longevity: lack of standardized in M2M protocols and diversities
in firmware;

• Intelligent Analysis and Actions: extracting insights from data for analysis;

• Privacy: data privacy and tracking devices;

• Regulatory standards for data markets are missing especially for data brokers and
gateways;

• Include the platform in other scenarios of real environments, e.g., SDN network man-
agement.

91

References

[1] O. Bonaventure. “Computer Networking: Principles, Protocols and Practice”. In:
Saylor Foundation, Belgium, May 30, 2014. IEEE. 2013, pp. 1–138.

[2] M Zorzi A. Zanella; N. Bui; A. Castellani; L. Vangelista. “Internet of Things for
Smart Cities”. In: IEEE Internet of Things Journal 1.2 (2014), pp. 22–30.

[3] X. Du; Y. Xiao; M. Guizani & H. H. Chen. “An Efficient Key Management Scheme
for Heterogeneous Sensor Networks”. In: International Journal of Computer Sci-
ence and Information Technologies 2.1 (2011), pp. 2343–2347.

[4] T. Qiu; N. Chen; K. Lib; D. Qiaoc & Z. Fud. “Heterogeneous ad hoc networks Ar-
chitectures, advances and challenges”. In: Computer Network 55.2 (2017), pp. 143–
152.

[5] M. Slabicki & K. Grochla. “Performance evaluation of CoAP, SNMP and NET-
CONF protocols in fog computing architecture”. In: NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium (2016), pp. 143–152.

[6] Varun M Tayur & Dr. R. Suchithra. “Internet of Things Architectures: Modeling
and Implementation Challenges”. In: Computational Systems for Health & Sustain-
ability (2015), pp. 9–13.

[7] N. Benamar; A. Jara; L. Ladid & D. E. Ouadghiri. “Challenges of the Internet of
Things: IPv6 and Network Management”. In: Eighth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (2014), pp. 30–
53.

[8] L. Atzori; A. Iera & G. Morabito. “The Internet of Things: A survey”. In: Computer
Networks 54.15 (2010), pp. 2787–2805.

[9] M. Meng; W. Ping & C. Chao-Hsien. “Data Management for Internet of Things:
Challenges, Approaches and Opportunities”. In: IEEE and Internet of Things Con-
ference (iThings/CPSCom) (2003), pp. 1144–1151.

[10] A. Passemard. “The Internet of Things Protocol stack - from sensors to businesss
value”. In: Internet of Things (IoT) talks (2014), pp. 11–15.

[11] J. Ruiz; B. Linnyer; M. S. J. Nogueira; M. S. José & A. A. Loureiro. “MANNA: A
management architecture for wireless sensor networks”. In: IEEE Communications
Magazine (2003), pp. 116–125.

[12] P. F. Pires; E. Cavalcante; T. Barros; F. C. Delicato; T. Batista & B. Costa. “A plat-
form for integrating physical devices in the Internet of Things”. In: 12th IEEE In-
ternational Conference on Embedded and Ubiquitous Computing (2014), pp. 234–
241.

92

[13] C. Perera; A. Zaslavsky; P. Christen & D. Georgakopoulos. “Context Aware Com-
puting for The Internet of Things: A Survey”. In: IEEE Communications Surveys &
Tutorials (2013).

[14] D. C. Y. Vargas & C. E. P. Salvador. “Smart IoT Gateway For Heterogeneous De-
vices Interoperability”. In: IEEE Latin America Transactions (2016).

[15] P. Sethi & S. R. Sarangi. “Internet of Things: Architectures, Protocols, and Appli-
cations”. In: Journal of Electrical and Computer Engineering (2016).

[16] J. C. Silva; J. J. P. C. Rodrigues & M. L. Porença Jr. “IoT Network Management:
Content and Analysis”. In: Simpósio Brasileiro de Telecomunicações e Processa-
mento de Sinais (2017).

[17] Jonathan de C. Silva; Joel J. P. C. Rodrigues; Jalal Al-Muhtadi; Ricardo A. L. Rabêlo;
Vasco Furtado. “Management Platforms and Protocols for Internet of Things: A
Survey”. In: IEEE Internet of Things Journal, February 15, 2019. Vol. 19. Sensors.
2016.

[18] L. L. de Souza; P. H. M. Pereira; J. C. Silva; C. N. M. Marins; G. A. B. Marcondes
& J. J. P. C. Rodrigues. “IoT Network Management Protocols: Practical Model and
Evaluation”. In: IEEE International Workshop on Communication, Computing, and
Networking in Cyber Physical Systems (CCNCPS 2018) (2018).

[19] J. C. Silva; P. H. M. Pereira; L. L. de Souza; C. N. M. Marins; G. A. B. Marcon-
des & J. J. P. C. Rodrigues. “Performance Evaluation of IoT Network Management
Platforms”. In: 7th International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI 2018) (2018).

[20] J. C. Silva; J. J. P. C. Rodrigues; K. Saleem; S. A. Kozlov; R. A. L. Rabêlos.
M4DN.IoT - A Network and Protocols Management Platform for IoT.

[21] J. C. Silva; F. B. Brito; J. J. P. C. Rodrigues & G. A. B. Marcondes. “Estudos sobre
Plataformas de Gerenciamento de Redes e Dispositivos para Internet das Coisas”.
In: ().

[22] A. Clemm. 2007.

[23] A. P. Athreya & P. Tague. “Network Self-Organization in the Internet of Things”.
In: IEEE Communications Society Conference Sensor, Mesh and Ad Hoc Commu-
nications and Networks (SECON) (2013), pp. 398–431.

[24] S. Lee; K. Levanti & H. S. Kim. “Network monitoring: Present and future”. In:
Computer Networks (2014), pp. 84–98.

[25] J. F. Kurose & K. W. Ross. 2010.

[26] M. Gabdurahmanov & S. Trygg. “Analysis and Evaluation of Network Management
Solutions”. In: Degree Project in Computer ENgineering, Sweden 2016 (2016),
pp. 1–84.

[27] O. Vermesan & P. Friess. “Internet of Things – From Research and Innovation to
Market Deployment”. In: River Publishers Series in Communication 4.5 (2014),
pp. 2787–2805.

93

[28] L. Sanchez; K. McCloghrie & J. Saperia. Evolution of LTE in Release 13. 3GPP,
Nov. 2017. URL: https://tools.ietf.org/html/rfc3139 (visited on 06/05/2018).

[29] L. L. Peterson & B. S. Davie. Computer networks: a systems approach. 5. Elsevier,
2012, pp. 1340–2200.

[30] C. Zhou & X. Zhang. “Toward the Internet of Things Application and Management:
A Practical Approach”. In: IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 1.2 (2014), pp. 1–6.

[31] F. C. Delicato; P. F. Pires & T. Batista. “Middleware solutions for the Internet of
Things”. In: Briefs in Computer Science (2013), pp. 10–21.

[32] C. Perera; S. Member; A. Zaslavsky & P. Christen. In: Context Aware Computing
for The Internet of Things: A Survey. IEEE, 2013, pp. 414–454.

[33] B. Song; Y. Cheong; T. Lee & J. Jeong. “Design and Security Analysis of Improved
Identity Management Protocol for 5G/IoT Networks”. In: World Conference on In-
formation Systems and Technologies (2017), pp. 10–21.

[34] European Commission. Deliverable D1.3 – Internet-of-Things Architecture IoT-A.
Tech. rep. European Commission, 2017, pp. 1–24. URL: https://www.cs.mun.
ca/courses/cs6910/IoT-A-D7_2.pdf.

[35] Y. Ma; J. Chen; Y. Huang & M. Lee. An Efficient Management System for Wireless
Sensor Networks. Sensors, 2010.

[36] J. Case; M. Fedor; M. Schoffstall & J. Davin. RFC 1157 - Simple Network Man-
agement Protocol (SNMP). 3GPP, Nov. 2017. URL: https://tools.ietf.org/
html/rfc1157/ (visited on 02/05/2018).

[37] SNMP Research. Simple Network Management Protocol. SNMP, Nov. 2017. URL:
http://www.snmp.com/protocol/ (visited on 02/15/2018).

[38] Dra. E. S. SPECIALSKI. Gerência de Redes de Computadores e de Telecomuni-
cações. Universidade de Santa Catarina, 2002.

[39] A. B. Ericsson. Simple Network Management Protocol 5.2.5 (SNMP). Erlang, 2017.

[40] ASN.1 PROJECT. Introduction to ASN.1. ITU-T, Oct. 2017. URL: http://www.
itu.int/en/ITU-T/asn1/Pages/introduction.aspx (visited on 02/15/2018).

[41] The OpenNMS Group. OpenNMS - Open Networks Management System. ITU-T,
Apr. 2017. URL: https://www.opennms.org/en (visited on 02/15/2018).

[42] R. Enns; M. Bjorklund; J. Schoenwaelder & A. Bierman. RFC 6241 - Network
Configuration Protocol (NETCONF). IETF, Mar. 2017. URL: https://tools.
ietf.org/html/rfc6241 (visited on 02/15/2018).

[43] M. Bjorklund. RFC 6020 - YANG - A data modeling language for NETCONF.
IETF, Oct. 2017. URL: https://tools.ietf.org/html/rfc6020 (visited
on 02/25/2018).

[44] H. Xu; C. Wang; W. Liu & H. Chen. “NETCONF-based Integrated Management
for Internet of Things using RESTful Web Services”. In: International Journal of
Future Generation Communication and Network (2012).

https://tools.ietf.org/html/rfc3139
https://www.cs.mun.ca/courses/cs6910/IoT-A-D7_2.pdf
https://www.cs.mun.ca/courses/cs6910/IoT-A-D7_2.pdf
https://tools.ietf.org/html/rfc1157/
https://tools.ietf.org/html/rfc1157/
http://www.snmp.com/protocol/
http://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
http://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.opennms.org/en
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6020

94

[45] C. Chappell. “White Paper Creating the Programmable Network: The Business Case
for NETCONF/YANG in Network Devices”. In: Heavy Reading (2013).

[46] B. Pfaff & B. Davie. RFC 7047 - The Open vSwitch Database Management Proto-
col. IETF, Dec. 2017. URL: https://tools.ietf.org/html/rfc7047 (visited
on 02/13/2018).

[47] B. Davie; T. Koponen; J. Pettit; M. Casado; N. Gude & T. Petty. “Public Review
for A Database Approach to SDN Control Plane Design”. In: ACM SIGCOMM
Computer Communication Review (2017).

[48] R. Beryllium. OpenDaylight Documentation. Tech. rep. OpenDaylight Project, 2017,
pp. 1–24. URL: https://docs.opendaylight.org/.

[49] C. Pastrone; M. Boella; M. Spirito; R. Tomasi & F. Rizzo. “A Jabber-Based Man-
agement Framework for Heterogeneous Sensor Network Applications”. In: ACM
SIGCOMM Computer Communication Review (2008).

[50] M. Scheck. Performance tests XMPP. IoT Messaging Protocols, May 2017. URL:
https://iotprotocols.wordpress.com/2015/03/31/performance-tests-
xmpp/ (visited on 01/03/2018).

[51] A. Stanik & O. Kao. “A proposal for REST with XMPP as base protocol for in-
tercloud communication”. In: 7th International Conference on Information, Intelli-
gence, Systems & Applications (IISA) (2016), pp. 10–34.

[52] EU-Brazil research and development Cooperation. D3.4 Network Management. Tech.
rep. IMPReSS Consortium, 2015, pp. 1–16. URL: http://impressproject.eu/
downloads/deliverables/D3.4_Network_Management.pdf.

[53] H. Yan. “Smart Devices Collaboration for Energy Saving in Home Networks”. In:
Préparée à l’unité de recherche IRISA (UMR 6074) (2014).

[54] H. Yan & F. Fontaine. “Patent 1454940: An adaptive proxy for compliance of the
equipments to ieee 1905 network”. In: Institut de Recherche en Informatique et
Systèmes Aléatoires (2014).

[55] IEEE. “IEEE Standard for a Convergent Digital Home Network for Heterogeneous
Technologies”. In: IEEE (2013).

[56] S. Palm. “Connected home - Focus on Networked Power Save and Management”.
In: ACEEE Intelligent Efficiency Conference: Program (2014).

[57] P. A. C. Neves & J. J. P. C. Rodrigues. “Internet Protocol over Wireless Sensor Net-
works, from Myth to Reality”. In: Journal of Communications 5.3 (2010), pp. 189–
196.

[58] A. Sehgal; V. Perelman; S. Kuryla & J. Schönwälder. “Management of Resource
Constrained Devices in the Internet of Things”. In: IEEE Communications Maga-
zine (2012).

[59] G. Ayala; P. Poskal & E. Gamess. “SNMP JManager: An Open Source Didactic
Application for Teaching and Learning SNMP v1/2c/3 with Support for IPv4 and
IPv6”. In: Seventh LACCEI Latin American and Caribbean Conference for Engi-
neering and Technology (LACCEI’2009) (2009).

https://tools.ietf.org/html/rfc7047
https://docs.opendaylight.org/
https://iotprotocols.wordpress.com/2015/03/31/performance-tests-xmpp/
https://iotprotocols.wordpress.com/2015/03/31/performance-tests-xmpp/
http://impressproject.eu/downloads/deliverables/D3.4_Network_Management.pdf
http://impressproject.eu/downloads/deliverables/D3.4_Network_Management.pdf

95

[60] H. Mukhtar; K. Kang-myo; S. A. Chaudhry; A. H. Akbar; K. Ki-hyung & S. Yoo.
“LNMP - Management Architecture for IPv6 based low- power Wireless Personal
Area Networks (6LoWPAN)”. In: Network Operations and Management Sympo-
sium (2008).

[61] N. Kushalnagar; G. Montenegro & C. Schumacher. RFC 4919 - 6LoWPAN: Overview,
Assumptions, Problem Statement and Goals. IETF, July 2017. URL: https : / /
tools.ietf.org/html/rfc4919 (visited on 01/03/2018).

[62] K. Kim; S. Yoo; D. Park; J. Lee & G. Mulligan. Hierarchical Routing over 6LoW-
PAN (HiLow). IETF, July 2007. URL: https://tools.ietf.org/html/draft-
daniel-6lowpan-hilow-hierarchical-routing-01 (visited on 01/03/2018).

[63] EU-Brazil research and development Cooperation. D7.3.2 Final Design and Imple-
mentation of the Configuration and Composition Manager. Tech. rep. IMPReSS
Consortium, 2015, pp. 1–16. URL: http://www.compose-project.eu/sites/
default/files/publications/D7.3.2%5C%20-%5C%20Use%5C%20cases%
5C%20implementation%5C%20%5C%E2%5C%80%5C%93%5C%20Final%5C%
20version.pdf.

[64] The OpenNMS Group. OpenNMS - Open Network Management System Wiki. Net-
work Working Group, Nov. 2017. URL: https://wiki.opennms.org/wiki/
Severity (visited on 01/03/2018).

[65] E. Haleplidis; J. Hadi Salim & S. Denazis. “Towards a Network Abstraction Model
for SDNs”. In: Journal of Network and Systems Management (2015).

[66] R. Olups. Zabbix 1.8 Network Monitoring. Tech. rep. Packet Publishing, 2010,
pp. 1–16. URL: https://sisis.rz.htw-berlin.de/inh2012/12423451.pdf.

[67] A. Dalle Vacche & S. Kewan Lee. Mastering Zabbix. Tech. rep. Packet Publishing,
2013, pp. 1–16. URL: http://www.omid-online.com/ebooks/MasteringZabbix.
pdf.

[68] W.River. “Device Management in Internet of Things”. In: Why It Matters and How
to Achieve It (2017).

[69] Z. Liu; F. Liu & K. Lin. “Agent-Based Device Management in RFID Middleware”.
In: 4th International Conference on Wireless Communications, Networking and Mo-
bile Computing (WiCOM’08) (2008).

[70] S. Bera; S. Misra; S. K. Roy & M. S. Obaidat. “Soft-WSN: Software-Defined WSN
Management System for IoT Applications”. In: IEEE Systems Journal (2016).

[71] B. Greevenbosch; K. Li & P. Van der Stok. Candidate Technologies for COMAN.
IETF, Nov. 2017. URL: http://tools.ietfs.org/html/draft-greevenboschcoman-
candidate-tech-03 (visited on 01/03/2018).

[72] H. Lamaazi; N. Benamar; A. Jara; L. Ladid & D. El Ouadghiri. “Internet of thing
and networks management: Lnmp, snmp, coman protocols”. In: Int. Work. Wirel.
Networks Mob. Commun.(WINCOM 2013) (2013).

https://tools.ietf.org/html/rfc4919
https://tools.ietf.org/html/rfc4919
https://tools.ietf.org/html/draft-daniel-6lowpan-hilow-hierarchical-routing-01
https://tools.ietf.org/html/draft-daniel-6lowpan-hilow-hierarchical-routing-01
http://www.compose-project.eu/sites/default/files/publications/D7.3.2%5C%20-%5C%20Use%5C%20cases%5C%20implementation%5C%20%5C%E2%5C%80%5C%93%5C%20Final%5C%20version.pdf
http://www.compose-project.eu/sites/default/files/publications/D7.3.2%5C%20-%5C%20Use%5C%20cases%5C%20implementation%5C%20%5C%E2%5C%80%5C%93%5C%20Final%5C%20version.pdf
http://www.compose-project.eu/sites/default/files/publications/D7.3.2%5C%20-%5C%20Use%5C%20cases%5C%20implementation%5C%20%5C%E2%5C%80%5C%93%5C%20Final%5C%20version.pdf
http://www.compose-project.eu/sites/default/files/publications/D7.3.2%5C%20-%5C%20Use%5C%20cases%5C%20implementation%5C%20%5C%E2%5C%80%5C%93%5C%20Final%5C%20version.pdf
https://wiki.opennms.org/wiki/Severity
https://wiki.opennms.org/wiki/Severity
https://sisis.rz.htw-berlin.de/inh2012/12423451.pdf
http://www.omid-online.com/ebooks/MasteringZabbix.pdf
http://www.omid-online.com/ebooks/MasteringZabbix.pdf
http://tools.ietfs.org/html/draft-greevenboschcoman-candidate-tech-03
http://tools.ietfs.org/html/draft-greevenboschcoman-candidate-tech-03

96

[73] Z. Sheng; H. Wang; C. Yin; X. Hu; S. Yang & V. C. Leung. “Lightweight manage-
ment of resource-constrained sensor devices in internet of things”. In: IEEE internet
of things (2015).

[74] M. Castro; A. J. Jara & A. F. Skarmeta. “Enabling end-to-end coap based commu-
nications for the web of things”. In: IEEE internet of things (2016).

[75] Open Mobile Alliance. OMA Device Management Standardized Objects. Tech. rep.
Open Mobile Alliance, 2016, pp. 1–16. URL: http://www.openmobilealliance.
org/release/DM/V1_3-20100525-C/OMA-TS-DM_StdObj-V1_3-20100525-
C.pdf.

[76] Open Mobile Alliance. OMA DM Device Description Framework. Tech. rep. Open
Mobile Alliance, 2012, pp. 1–34. URL: https://resources.solitonsystems.
com/manuals/DMES/4_0/5212.htm.

[77] Open Mobile Alliance. OMA Device Management Tree and Description. Tech. rep.
Open Mobile Alliance, 2012, pp. 1–14. URL: http://www.openmobilealliance.
org/release/DM/V1_3-20121009-C/OMA-TS-DM_TND-V1_3-20121009-
C.pdf.

[78] Open Mobile Alliance. OMA DM Device Description Framework. Tech. rep. Open
Mobile Alliance, 2016, pp. 1–34. URL: http://www.openmobilealliance.org/
release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-
A.pdf.

[79] N. Chu; D. Raouf; B. Corlay; M. Ammari; N. Gligoric; S. Krco; N. Ognjanovic & A.
Obradovic. “OMA DM v1.x compliant Lightweight Device Management for Con-
strained M2M devices”. In: European Transactions on Telecommunications (2013).

[80] V. Yadav; M. Verma & Nisha. “A Survey Paper on Wireless Access Protocol”. In:
International Journal of Computer Science and Information Technologies, May 30,
2014. IEEE. 2015.

[81] H. Derhamy; J. Eliasson; J. Delsing & P. Priller. “A Survey Paper on Wireless Ac-
cess Protocol”. In: IEEE 20th Conference on Emerging Technologies & Factory
Automation (ETFA), December 30, 2015. IEEE. 2015.

[82] G. Diviney. “An Introduction to Short-Range Wireless Data Communications”. In:
Embedded Systems Conference (2003).

[83] M. Choi; J. Won-Ki Hong & J. Kim J. Kang; H. Ju. “OMA DM-based remote soft-
ware fault management for mobile devices”. In: International Journal of Network
Management (2009).

[84] Z. Shelby; S. Akhouri & J. Höller G. Klas; F. Rodermund. Lightweight M2M: En-
abling Device Management and Applications for the Internet of Things. Tech. rep.
Ericsson and T-Mobile, 2014, pp. 1–21. URL: https://www.omaspecworks.org/
wp-content/uploads/2018/10/Whitepaper-11.1.18.pdf.

[85] M. C. Ocak. “Implementation of an Internet of Things Device Management Inter-
face”. In: Master Thesist (2014).

http://www.openmobilealliance.org/release/DM/V1_3-20100525-C/OMA-TS-DM_StdObj-V1_3-20100525-C.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20100525-C/OMA-TS-DM_StdObj-V1_3-20100525-C.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20100525-C/OMA-TS-DM_StdObj-V1_3-20100525-C.pdf
https://resources.solitonsystems.com/manuals/DMES/4_0/5212.htm
https://resources.solitonsystems.com/manuals/DMES/4_0/5212.htm
http://www.openmobilealliance.org/release/DM/V1_3-20121009-C/OMA-TS-DM_TND-V1_3-20121009-C.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20121009-C/OMA-TS-DM_TND-V1_3-20121009-C.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20121009-C/OMA-TS-DM_TND-V1_3-20121009-C.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-A.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-A.pdf
http://www.openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-A.pdf
https://www.omaspecworks.org/wp-content/uploads/2018/10/Whitepaper-11.1.18.pdf
https://www.omaspecworks.org/wp-content/uploads/2018/10/Whitepaper-11.1.18.pdf

97

[86] C. A. L. Putera & F. J. Lin. “Incorporating OMA Lightweight M2M protocol in
IoT/M2M standard architecture”. In: 2nd World Forum on Internet of Things (WF-
IoT) (2015).

[87] S. Rao; D. Chendanda; C. Deshpande & V. Lakkundi. “Implementing LWM2M in
constrained IoT devices”. In: IEEE ICWiSe (2015).

[88] Red Band Software. FOTA Usage in the United States. Tech. rep. ITU, 2011, pp. 1–
7. URL: https://www.itu.int/en/ITU- T/extcoop/cits/Documents/
Meeting - 201512 - Arlington / 007 % 5C % 20 - %5C % 20Secure % 5C % 20Over -
the- Air%5C%20Vehicle%5C%20Software%5C%20Updates%5C%20- %5C%
20Operational%5C%20and%5C%20Functional%5C%20Requirements.docx.

[89] S. N. Chowdhury; K. M. Kuhikar & S. Dhawan. “IoT Architecture: A Survey”. In:
International Journal of Industrial Electronics and Electrical Engineering, May 23,
2015. Vol. 3. ijieee. 2015.

[90] G. Dai. “Design and implementation on SOAP- based things management protocol
for internet of things”. In: 10th World Congress Intelligent Control and Automation
(WCICA) (2012).

[91] Wisys Technologies. EZLux – Smart Street Lighting. IETF, Apr. 2017. URL: https:
//wisystech.com/solutions/ezlux-smart-street-lighting-bangalore/
(visited on 01/13/2018).

[92] B. A. G. Hillen; I. Passchier; E. F. Matthijssen; F. T. H. den Hartog & F. Selgert. “Re-
mote management of mobile devices with broadband forum’s TR-069”. In: IEEE
Telecommunications Network Strategy and Planning Symposium (2008).

[93] B. A. G. Hillen; I. Passchier; E. F. Matthijssen; F. T. H. den Hartog & F. Selgert. TR-
69 CWMP v1.4 Especifications. IETF, July 2017. URL: https://www.broadband-
forum.org/technical/download/TR-069.pdf (visited on 01/13/2018).

[94] & J. Song S. Husain; A. Prasad A. Kunz; A. Papageorgiou. “Recent Trends in Stan-
dards Related to the Internet of Things and Machine-to-Machine Communications”.
In: IEEE Telecommunications Network Strategy and Planning Symposium (2014).

[95] K. Lee; H. Chu; J. Chu; Y. Lin; C. Hsiao & T. Hou. “ACS management capacity
enhancement mechanism in CWMP”. In: Electronics Letters (2014).

[96] B. A. G. Hillen; I. Passchier; E. F. Matthijssen; F. T. H. den Hartog & F. Selgert.
Roll Out New Services with TR-069: A Cable IPTV Use Case. Incognito, Sept. 2017.
URL: http://www.incognito.com/wp-content/uploads/cable-tr-069-
iptv-use-case (visited on 01/13/2018).

[97] T.-H. Wang; Y. C. Chen; C. M. Hsu; K. S. Hsu & H. C. Young. “Auto scaling of con-
tainerized ACSs for CPE management”. In: Network Operations and Management
Symposium (APNOMS) (2014).

[98] M. Santos; T. O. Castro; D. F. Macedo & B. Horizonte. “ManIoT : Uma Plataforma
para Gerenciamento de Dispositivos da Internet das Coisas”. In: Simpósio Brasileiro
de Redes de Computadores e Sistemas Distribuídos (2016).

https://www.itu.int/en/ITU-T/extcoop/cits/Documents/Meeting-201512-Arlington/007%5C%20-%5C%20Secure%5C%20Over-the-Air%5C%20Vehicle%5C%20Software%5C%20Updates%5C%20-%5C%20Operational%5C%20and%5C%20Functional%5C%20Requirements.docx
https://www.itu.int/en/ITU-T/extcoop/cits/Documents/Meeting-201512-Arlington/007%5C%20-%5C%20Secure%5C%20Over-the-Air%5C%20Vehicle%5C%20Software%5C%20Updates%5C%20-%5C%20Operational%5C%20and%5C%20Functional%5C%20Requirements.docx
https://www.itu.int/en/ITU-T/extcoop/cits/Documents/Meeting-201512-Arlington/007%5C%20-%5C%20Secure%5C%20Over-the-Air%5C%20Vehicle%5C%20Software%5C%20Updates%5C%20-%5C%20Operational%5C%20and%5C%20Functional%5C%20Requirements.docx
https://www.itu.int/en/ITU-T/extcoop/cits/Documents/Meeting-201512-Arlington/007%5C%20-%5C%20Secure%5C%20Over-the-Air%5C%20Vehicle%5C%20Software%5C%20Updates%5C%20-%5C%20Operational%5C%20and%5C%20Functional%5C%20Requirements.docx
https://wisystech.com/solutions/ezlux-smart-street-lighting-bangalore/
https://wisystech.com/solutions/ezlux-smart-street-lighting-bangalore/
https://www.broadband-forum.org/technical/download/TR-069.pdf
https://www.broadband-forum.org/technical/download/TR-069.pdf
http://www.incognito.com/wp-content/uploads/cable-tr-069-iptv-use-case
http://www.incognito.com/wp-content/uploads/cable-tr-069-iptv-use-case

98

[99] K. Stravoskoufos; S. Sotiriadis; & E. Petrakis. “Iot-a and fiware: bridging the bar-
riers between the cloud and iot systems design and implementation”. In: 6th inter-
national conference on cloud computing and services science (CLOSER 2016) 2
(2016).

[100] FIWARE. FIWARE iot stack. FIWARE Foundation, Apr. 2017. URL: https://
www.fiware.org/ (visited on 02/13/2018).

[101] FIWARE. FIWARE iot stack. FIWARE Foundation, Apr. 2017. URL: http : / /
forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main%
5C_Page (visited on 02/13/2018).

[102] FIWARE. FIWARE iot stack. FIWARE Foundation, Apr. 2017. URL: http://map.
fiware.org/actors/smes/434 (visited on 02/13/2018).

[103] W.-G. Chang & F. J. Lin. “Challenges of incorporating oma lwm2m gateway in
m2m standard architecture”. In: International conference Standards for Communi-
cations and Networking (CSCN) (2016).

[104] S. K. Datta & C. Bonnet. “A lightweight framework for efficient m2m device man-
agement in onem2m architecture”. In: International Conference Recent Advances
in Internet of Things (RIoT) (2015).

[105] P. Jacobs; F. Ennesser & J. Song J. Swetina; G. Lu. “Toward a standardized common
m2m service layer platform: Introduction to onem2m”. In: IEEE Wireless Commu-
nications (2014).

[106] ONEM2M Standards for M2M and the Internet of Things. Application Developer
Guide - TR-0025 V1.0.0. ONEM2M Foundation, Feb. 2017. URL: https://www.
etsi.org/deliver/etsi_tr/118500_118599/118525/01.00.00_60/tr_
118525v010000p.pdf (visited on 03/10/2018).

[107] ONEM2M Standards for M2M and the Internet of Things. Application Developer
Guide - Use Case. ONEM2M Foundation, Feb. 2017. URL: http://onem2m.org/
application-developer-guide/use-case (visited on 03/10/2018).

[108] SmartThing Project. Use Case for SmartThings Project. SmartThings Foundation,
Feb. 2017. URL: https://blog.smartthings.com/tag/smartthings-use-
casesf (visited on 03/10/2018).

[109] W. Qin; Q. Li; L. Sun; H. Zhu & Y. Liu. “Restthing: A restful web service in-
frastructure for mash-up physical and web resources”. In: IFIP 9th International
Conference Embedded and Ubiquitous Computing (EUC) (Mar. 2011).

[110] S. Lavanya. “A Smart Network: IoT to Monitor Temperature and Heart beat of a
Person Using RFID Technology”. In: ECE Department, Aarupadai Veedu Institute
of Technology, CHENNAI (T.N.) INDIA (2016).

[111] P. P. Ray. “A survey of IoT cloud platforms”. In: Future Computing and Informatics
Journal, July 10, 2015. Vol. 3. Elsevier. 2017.

[112] R. Jang; W. Soh & S. Jung. “Design and Implementation of Data-Report Service for
IoT Data Analysis”. In: International Conference on Chemical, Material and Food
Engineering (CMFE-2015) (2015).

https://www.fiware.org/
https://www.fiware.org/
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main%5C_Page
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main%5C_Page
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main%5C_Page
http://map.fiware.org/actors/smes/434
http://map.fiware.org/actors/smes/434
https://www.etsi.org/deliver/etsi_tr/118500_118599/118525/01.00.00_60/tr_118525v010000p.pdf
https://www.etsi.org/deliver/etsi_tr/118500_118599/118525/01.00.00_60/tr_118525v010000p.pdf
https://www.etsi.org/deliver/etsi_tr/118500_118599/118525/01.00.00_60/tr_118525v010000p.pdf
http://onem2m.org/application-developer-guide/use-case
http://onem2m.org/application-developer-guide/use-case
https://blog.smartthings.com/tag/smartthings-use-casesf
https://blog.smartthings.com/tag/smartthings-use-casesf

99

[113] A. Wendel. Customer Spotlight: Watts Water. Xively Foundation, Apr. 2018. URL:
http://blog.xively.com/customer-spotlight-watts-water/ (visited on
07/10/2018).

[114] S. Lorenz. Blueprint: A Central Control Hub for Connected Products.

[115] Carriots. Carriots–IoT Application Platform. Carriots Foundation, Aug. 2018. URL:
https://www.carriots.com (visited on 10/12/2018).

[116] M. Zdravkovic; M. Trajanovic; J. Sarraipa; R. Jardim-Gonçalves & M. Lezoche.
“Survey of Internet-of-Things platforms”. In: 6th International Conference on In-
formation Society, Techology, ICIST, February 10, 2016. Vol. 3. IEEE. 2016.

[117] A. Gluhak; O. Vermesan; R. Bahr; F. Clari; T. MacchiaMaria; T. Delgado; A. Hoeer;
F. Bösenberg; M. Senigalliesi & V. Barchetti. FOTA Usage in the United States.
Tech. rep. IoT EU Foundation, 2016, pp. 1–7. URL: http://www.internet-of-
things-research.eu/pdf/D03_01_WP03_H2020_UNIFY-IoT_Final.pdf.

[118] J. A. Jara; M. A. Zamora & A. F. Skarmeta. “Knowledge acquisition and manage-
ment architecture for mobile and personal health environments based on the Inter-
net of things”. In: 11th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom) (2012).

[119] IFTTT. IFTTT - Connect the apps you love. IFTTT Foundation, July 2018. URL:
https://ifttt.com/ (visited on 09/22/2018).

[120] Neha; M. S. Meena & Rajbir. “Implementation of SNMP (Simple Network Man-
agement Protocol) on Sensor Network”. In: International Journal of Advanced Re-
search in Computer Engineering & Technology (IJARCET) (2016).

[121] H. Hui-ping; X. Shi-de & M. Xiang-yin. “Applying SNMP Technology to Manage
the Sensors in Internet of Things”. In: The Open Cybernetics & Systemics Journal
(2015).

[122] B. Hedstrom; A. Watwe & S. Sakthidharan. “Protocol Efficiencies of NETCONF
versus SNMP for Configuration Management Functions”. In: PhD thesis (2011).

[123] M. A. Marotta; C. B. Both; J. Rochol; L. Z. Granville & L. M. R. Tarouco. “Evaluat-
ing Management Architectures for Internet of Things Devices”. In: IEEE - Wireless
Days (WD), 2014 IFIP (2014).

[124] J. C. Silva; F. Andery; D. Mazzer & L. D. P. Mendes. “Factorial Design Analysis
Applied to the Performance of Transmission Power Optimization Techniques for
Wireless Sensor Networks”. In: XXII Iberchip Workshop (2016).

[125] Stanford University. TinyOS Documentation Wiki. Stanford University, May 2018.
URL: http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_
Documentation_Wiki (visited on 10/12/2018).

[126] Contiki OS. Contiki: The Open Source OS for the Internet of Things. Contiki Foun-
dation, Aug. 2018. URL: http://www.contiki-os.net/ (visited on 10/12/2018).

[127] Momote.io. Momote 001 - Design Documentation. Momote Foundation, Aug. 2018.
URL: http://momote.io/momote001-en.html (visited on 10/12/2018).

http://blog.xively.com/customer-spotlight-watts-water/
https://www.carriots.com
http://www.internet-of-things-research.eu/pdf/D03_01_WP03_H2020_UNIFY-IoT_Final.pdf
http://www.internet-of-things-research.eu/pdf/D03_01_WP03_H2020_UNIFY-IoT_Final.pdf
https://ifttt.com/
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_Wiki
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_Wiki
http://www.contiki-os.net/
http://momote.io/momote001-en.html

100

[128] Texas Instruments. CC2538 - A Powerful System-On-Chip for 2.4-GHz IEEE 802.15.4-
2006 and ZigBee Applications. Texas Instruments, Aug. 2018. URL: http://www.
ti.com/product/CC2538 (visited on 10/12/2018).

[129] J. Strassner. “Policy-based Network Management: Solutions for the Next Genera-
tion”. In: IEEE Communications Magazine 42 (2014).

[130] J. Van der Ham. “Challenges of an information model for federating virtualized in-
frastructures”. In: 5th International DMTF Academic Alliance Workshop on Systems
and Virtualization Management: Standards and the Cloud (2011).

[131] J. Jiyong; H. Saeyoung; K. Jinseok; P. Sungyong; B. Seungjo & C. W. Young.
“7th IEEE International Conference on Computer and Information Technology”.
In: (2011).

[132] Van Deursen and Van Dijk. “Using the Internet: Skill related problems in users
online behavior”. In: Interacting with Computers (2009).

[133] Tools Moz SEO Software. Resources for Smarter Marketing. Moz SEO Software,
Aug. 2018. URL: https://moz.com/ (visited on 10/12/2018).

[134] Alexa. Website Traffic, Statistics and Analytics. Alexa, Oct. 2018. URL: http://
www.alexa.com/siteinfo (visited on 11/22/2018).

[135] PMI – PROJECT MANAGEMENT INSTITUTE. 2003.

[136] W3Schools. XML Tutorial. Alexa, Aug. 2018. URL: https://www.w3schools.
com/xml/ (visited on 09/22/2018).

[137] ERCIM. “Network description tools and standards”. In: Future Internet Technology
(2009).

[138] PM.U. Farooq; Muhammad Waseem; Anjum Khair & Sadia Mazhar. “A Critical
Analysis on the Security Concerns of Internet of Things (IoT)”. In: International
Journal of Computer Applications (2015).

[139] University of Amsterdam SNE research group. Network Description Language.
University of Amsterdam SNE research group, Aug. 2018. URL: http://www.
science.uva.nl/research/sne/nd (visited on 09/22/2018).

[140] R. K. Ghosh. “Wireless Networking and Mobile Data Management”. In: Communi-
cation Networks (2017), pp. 1–67.

[141] Apache Software Foundation. Apache JMeter: load test functional and measure
performance. Apache Software Foundation, Nov. 2018. URL: http://jmeter.
apache.org/ (visited on 12/22/2018).

[142] B. Hedstrom; A. Watwe & S. Sakthidharans. “Protocol Efficiencies of NETCONF
versus SNMP for Configuration Management Functions”. In: Masters in Interdisci-
plinary Telecommunications (2011).

[143] R. Pressman. Engenharia de Software - Uma Abordagem Profissional. Bookman,
2016.

[144] J. Preece; Y. Rogers & H. Sharp. Design de interação – Além da interação homem-
computador. Bookman, 2005.

http://www.ti.com/product/CC2538
http://www.ti.com/product/CC2538
https://moz.com/
http://www.alexa.com/siteinfo
http://www.alexa.com/siteinfo
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
http://www.science.uva.nl/research/sne/nd
http://www.science.uva.nl/research/sne/nd
http://jmeter.apache.org/
http://jmeter.apache.org/

101

[145] D. M. Fernandez; S. Wagner; K. Lochmann; & A. Baumann. “Field study on re-
quirements engineering: Investigation of artefacts, project parameters, and execu-
tion strategies”. In: Information and Software Technology 54 (2012).

[146] K. Curcio; T. Navarro; A. Malucelli; & S. Reinehr. “Requirements engineering: A
systematic mapping study in agile software development.” In: Journal of Systems
and Software 154 (2018).

[147] IoT RG - Inatel. In.IoT - a middleware platform for Internet of Things (IoT). Inatel,
July 2018. URL: http://jmeter.apache.org/ (visited on 12/22/2018).

[148] Jonathan de C. Silva & Joel J. P. C. Rodrigues. M4DN.IoT – Management for IoT
Devices and Network. Tech. rep. Instituto Nacional de Telecomunicações, 2018.

[149] M. Christoffersen. “Demand side management of electric water heater with a pho-
tovoltaic system”. In: Master thesis (2018).

[150] Google. AngularJS — Superheroic JavaScript MVW Framework. Google Founda-
tion, Nov. 2018. URL: https://angularjs.org/ (visited on 12/22/2018).

[151] R. Lerdorf.

[152] Corrente. Node.js: a JavaScript engine. NodeJS Foundation, Nov. 2018. URL: https:
//nodejs.org/ (visited on 12/22/2018).

[153] Creative Commons. REST API Tutorial. Creative Foundation, Nov. 2018. URL:
https://www.restapitutorial.com/ (visited on 12/22/2018).

[154] M. Otto & J. Thornton. Bootstrap: The most popular HTML, CSS, and JS library
in the world. MIT, Nov. 2018. URL: https://getbootstrap.com/ (visited on
12/22/2018).

[155] A. Jacomy & G. Plique. Sigma: a JavaScript library dedicated to graph drawing.
MIT, Nov. 2018. URL: http://sigmajs.org (visited on 12/22/2018).

[156] A. K. Shulman; W. Shulman & J. Cottrell. MongoDB Hosting: Database-as-a-
Service by mLab. MongoDB, Nov. 2018. URL: https://mlab.com/ (visited on
12/22/2018).

[157] SmartThing Project. Developer Documentation: Release 1.0. SmartThings Founda-
tion, Feb. 2017. URL: https://media.readthedocs.org/pdf/smartthings/
latest/smartthings.pdf (visited on 03/10/2018).

[158] Digital CX & IoT I Europe. “IoT Platforms for Device Management: Positioning
of Bosch Software Innovations”. In: SITSI I Vendor Analysis I PAC INNOVATION
RADAR (2017).

[159] M. Stusek; P. Masek; K. Zeman; D. Kovac; P. Cika; J. Pokorny & F. Kröpfl. “A
Novel Application of CWMP: An Operator-grade Management Platform for IoT”.
In: International Journal of Advances in Telecommunications Electrotechnics, Sig-
nals and Systems (2016).

[160] C. Thomson; I. Romdhani; A. Y. Al-Dubai & I. Wadhaj. Cooja Simulator Manual.
Contiki Foundation, July 2018. URL: https://anrg.usc.edu/contiki/index.
php/Cooja_Simulator (visited on 12/22/2018).

http://jmeter.apache.org/
https://angularjs.org/
https://nodejs.org/
https://nodejs.org/
https://www.restapitutorial.com/
https://getbootstrap.com/
http://sigmajs.org
https://mlab.com/
https://media.readthedocs.org/pdf/smartthings/latest/smartthings.pdf
https://media.readthedocs.org/pdf/smartthings/latest/smartthings.pdf
https://anrg.usc.edu/contiki/index.php/Cooja_Simulator
https://anrg.usc.edu/contiki/index.php/Cooja_Simulator

	List of Figures
	List of Tables
	Abbreviations
	Resumo
	Abstract
	Introduction
	Motivation
	Problem Definition
	Research Objectives
	Main Contributions
	Publications
	Registered Software
	Thesis statement
	Document Organization

	IoT Management Protocols and Platforms
	Background
	IoT Network Management Protocols
	Simple Network Management Protocol (SNMP)
	Network Configuration Protocol (NETCONF)
	Open vSwitch Database (OVSDB)
	Internet of Things Platform's Infrastructure for Configurations (IoT-PIC)
	IEEE 1905
	LoWPAN Network Management Protocol (LNMP)

	IoT Network Management Platforms
	IMPReSS
	OpenNMS
	OpenDaylight
	Zabbix

	IoT Device Management Protocols
	COnstrained networks and devices MANagement (COMAN)
	Things Management Protocol (TMP)
	CPE WAN Management Protocol (CWMP)

	IoT Device Management Platforms
	Management for the Internet of Things (ManIoT)
	Fiware
	ONEM2M
	SmartThings
	RestThing
	Xively
	Carriots

	Performance Comparison, Analysis, and Open Issues
	Open research issues on IoT management

	Summary

	Performance Evaluation of IoT Network Management Platforms and Protocols
	Experimental Scenario
	Hardware and Software Specifications
	System Architecture

	Qualitative Metrics
	IoT Network Management Protocols
	IoT Network Management Platforms

	Quantitative Metrics
	IoT Network Management Platforms and Protocols

	Comparison Evaluation of Protocols and Platforms
	Summary

	Proposal of an IoT Management Platform for Networks and Devices
	Software Requirements Engineering
	Requirements Engineering Process
	Theoretical Fundamentals of Requirements
	Reuse of requirements
	Prototyping

	Requirements analysis
	Functional Requirements
	Non Functional Requirements

	Requirements Modeling
	System Requirements

	Proposal of a new IoT Management Platform (M4DN.IoT)
	System Architecture
	Methods and models of software design
	Data Flow Diagram
	Relationship Entity Diagram

	Languages and Technologies Used

	Solution Demonstration and Validation
	Front-end and Back-end usability
	Main Functionalities and Operation
	Future Developments

	Summary

	Conclusion and Future Works
	Lessons Learned
	Concluding Remarks
	Future Works

	References

