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Resumo

Silva, T.B. da. NovaGenesis Control Agent for Future Internet Exchange
Point [dissertação de mestrado]. Santa Rita do Sapucaí: Instituto Nacional
de Telecomunicações; 2021.

Ao longo de sua existência, a Internet se tornou um serviço de utilidade
pública e modificou a nossa forma de lazer, modelos de trabalho e as econô-
micas. No entanto, a arquitetura e a infraestrutura atuais de Internet pre-
cisam de melhorias para fomentarem aplicações futuras. Algumas limi-
tações se apresentam na forma de suporte à identificação, mobilidade e
segurança de entidades na rede. Estas e outras limitações impulsionam
o desenvolvimento de Arquiteturas de Internet do Futuro, as quais podem
propor projetos revolucionários para repensar a Internet do zero, e.g. No-
vaGenesis. Ao se considerar a complexidade e heterogeneidade atuais das
aplicações, uma demanda pode surgir na forma de uma rede multi arquite-
tura, onde projetos disjuntos coexistem em uma mesma infraestrutura para
atender requisitos de operação variados e Pontos de Troca de Tráfego serão
cruciais para encaminhar pacotes de natureza distintas. O presente tra-
balho apresenta o Agente de Controle NovaGenesis para o Future Internet
eXchange Point baseado na arquitetura P4. Esta proposta de dissertação
avança o estado da arte ao desenvolver um controlador nativo e eficiente
para a arquitetura NovaGenesis que gerencia um Plano de Dados dinami-
camente. Conclui-se que o protótipo valida a solução bottom-up adotada
em topologias variadas sem afetar significativamente o cenário de troca de
conteúdos.
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Abstract

Silva, T.B. da. NovaGenesis Control Agent for Future Internet Exchange
Point [MSc dissertation]. Santa Rita do Sapucaí: Instituto Nacional de Tele-
comunicações; 2021.

The Internet has become a public utility service and changed our leisure,
work, and economy models. However, the current architecture and infras-
tructure of the Internet need improvement to support future applications.
Some limitations concern the support for the identification, mobility, and
security of entities in the network. These and other drawbacks have driven
the development of Future Internet Architectures, where some revolution-
ary projects rethink the Internet from scratch, e.g. NovaGenesis. When
considering the current complexity and heterogeneity of technologies, a fu-
ture requirement can arise in the form of a multi-architectural network,
where disjoint architectures coexist in the same infrastructure to fulfill var-
ied operational requirements. Therefore, Internet Exchange Points will be
crucial to forward packets of different nature. This work presents the No-
vaGenesis Control Agent for Future Internet eXchange Point based on the
P4 architecture. This dissertation proposal advances the state-of-the-art
by developing a native and efficient controller for the NovaGenesis archi-
tecture that dynamically manages a Data Plane. The proposed prototype
validates the bottom-up solution adopted in varied topologies without sig-
nificantly affecting the content exchange evaluation scenario.

Keywords: NovaGenesis, Future Internet eXchange Point, Next-Generation
Software Defined Networks, Future Internet Architectures, P4.
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Chapter 1

Introduction

THIS chapter introduces concepts related to the current Internet and its
evolvability. At first, it defines the Internet, its structure, and routing.

Therefore, it highlights how heterogeneous devices with the most diverse
access technologies benefits from this architecture.

In a second moment, it exposes some challenges of the current Internet
model and how to address them in an evolutionary and revolutionary way.
In addition, we discuss the future technology, how society can benefit from
it, and some approaches to converge some technology trends. Paradoxi-
cally, contemporary society has the challenge to evolve the external techno-
logical environment and the Internet infrastructure at the same time.

Given this panorama, we can specify the objectives and the main general
collaborations of the work presented in this dissertation. As proof of its rel-
evance, it also lists the developed publications during the author’s Masters’
period. Finally, it displays the overall organization of this thesis.

1.1 Current Internet

This sections presents the current Internet model. At first, it defines
what is the Internet. After this, it presents how the Internet can support so
many heterogeneous devices, technologies, and systems globally. Follow-
ing, it highlights the network organization and its routing scheme briefly.

1.1.1 After all, what is the Internet?

As ubiquitous as the Internet is today, it is essential to define this infras-
tructure beforehand. This system is much more than a simple network of
interconnected computers, a system like the World Wide Web or an Internet
provider that guarantees your connection to the global network. Hence, the
Internet is a much more complex artifact that encompasses all the previous
examples, in which heterogeneous devices, access methods, and systems

1
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share consonant protocols to provide general services [1]. The Internet can
encompass the most diverse devices such as personal computers, smart-
phones, or Internet of Things (IoT) sensors, wherein distributed networks
present the most varied types and sizes of gadgets and topologies. These
are then connected globally through wired or wireless systems, supported
by Internet providers, mobile telephony, or satellites.

This whole access democratization effort started around 1970 through
the Advanced Research Projects Agency Network (ARPANET) [1,2]. During
this project, the intent was to develop a way to connect research and scat-
tered military centers to exchange data over long distances robustly and
reliably. This project goal was to avoid possible attacks that would affect
the entire communication network, compromising its operation by creating
disconnected islands [1]. Over time, this infrastructure has expanded its
reach to create Local Area Networks (LANs), Metropolitan Area Networks
(MANs), and Wide Area Networks (LANs) with new technologies to achieve
the goal of increasingly connecting more devices [1].

The Internet connection scope has increased only through evolution-
ary proposals, which shifted from a restricted communication network to
a global infrastructure. As some outstanding examples, we can mention the
Domain Name System (DNS) that allowed the translation of domains into
IP addresses to locate resources conveniently. Furthermore, the official
standardization of the TCP/IP protocol guided how systems should commu-
nicate coherently. Along the same lines, the evolution of analog telephony
technology to Digital Subscriber Line (DSL) has optimized the telephony in-
frastructure to transmit digital broadband data, simultaneously with voice
over the same telephone line [1,3].

Through these and other evolutions, the Internet has become an ecosys-
tem focused on the client/server model, where the network infrastructure is
only responsible for forwarding data. In this way, applications are responsi-
ble for exercising intelligence and giving purpose to the data they transmit.
This entire ecosystem enables the exchange of data from social media con-
tent to services provided by individuals, companies, and governments to a
large mass in the most varied way possible.

1.1.2 One Internet to Rule Them All

As you probably can see in your life, the Internet establishes the same
foundation to connect any entity in its network infrastructure. This means
that the communication of any device happens based on a standardized
reference model. In this way, you do not need to worry with how your
gadget connects to the Internet. The Internet standards define a layered
model to create a protocol stack wherein each layer has a set of well-defined
(or something like a common consensus) functions to perform regardless of
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the device technology or its Internet access. In sum, these layers support
any application and adapt its service to be compatible with the Internet.

Over time, we had two major reference models for the Internet. At first,
the Open Systems Interconnection Model (OSI) model presents 7 layers
that encompass from the physical data transmission until the highest level
where applications interact with human beings [1, 3]. Nonetheless, this is
not the current Internet foundation. Concerning the most expressive In-
ternet model nowadays, the Transmission Control Protocol/Internet Proto-
col (TCP/IP) is the adopted model, which normalizes the execution of glob-
ally distributed services across the many diverse systems through the net-
work [1,3]. Figure 1.1 illustrates the TCP/IP considering two hosts and two
network elements, regardless of the Link Layer technology.

Link Layer Link Layer Link Layer Link Layer

Internet Layer Internet Layer Internet Layer Internet Layer

Transport Layer Transport Layer

Application Layer Application Layer

Figure 1.1: TCP/IP Network Layer Model.

Discussing this model is out of the scope of this document (and it is well-
established in the literature). Nonetheless, notice that these layers fosters
the data exchange through heterogeneous technologies. Usually, network
elements present only two layers that provide the physical and logical net-
work interconnection, forwarding and/or adapting the received data to an-
other protocol, such as network gateways. Even though the network might
be robust to adapt to a faulty link, it lacks the efficiency to ascertain the
data at the network level, diminishing possible redundant data replication,
and improving the security of the forwarded data.

1.1.3 Network Domains and Routing

Through the TCP/IP model and the DNS, the Internet ensures the lo-
calization of any connected entity regardless of its physical localization
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through Internet Protocol (IP) addresses [1,3]. An Internet client requires
an Internet Service Provider (ISP) to access the Internet Infrastructure.
Each ISP provides the best and most profitable manner to connect its clients
through Point of Presences (PoPs), exploiting any access media possible,
such as fiber, mobile, or satellite networks. Depending on the ISP scale,
its network links or backbones can interconnect local, national, or interna-
tional clients through several Autonomous Systems (ASs). This fact yields
in MANs and LANs that may exploit different Link Layer technologies. In
its turn, an isolated and individual ISP hardly can present a global reach.
Therefore, the interconnection between ISPs happens through Internet Ex-
change Point (IXP) peering that vertically connects ISPs. Focusing on this
vertical hierarchy, a Tier 1 ISP is an ISP that can reach a major set of ISP
networks. Figure 1.2 tries to simplify this presentation.

ISP 1

ISP 2

ISP 3

Tier 1 ISP

IXP
Peering IXP

Peering

IXP
Peering

PoP

PoP

PoP

PoP
PoP

PoP
PoP

Backbone

Backbone

Backbone

Backbone

Backbone Backbone

Figure 1.2: Internet network infrastructure. Adapted from [1].

Considering intra-domain communication, the routing scheme is straight-
forward once the data exchange happens within the same network domain
and complies with the ISP policies. Nonetheless, this is the case that sel-
dom happens [3]. In most cases, we are trying to reach content that is in
a different domain. For example, someone could try to access the NASA
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website from Brazil. In this way, the whole infrastructure has to adapt for
inter-domain communication, exploiting the IXP peering to fulfill a request.

Therefore, inter-domain communication is even more complex because
it involves divergent policies. ISPs hinder data that may compromise their
business and countries differ on how to ensure data security. For example,
Brazilian General Personal Data Protection Law is not the same as the North
American. In summary, the inter-domain communication is convoluted and
its discussion is out of the scope of this document.

Each IXP usually deploys a LAN of routers that enables the ISP peering,
fulfilling the data exchange between ISP backbones [1]. In this way, the
Internet routing scheme highly relies upon this ISP and IXP structure to
forward a packet. During this exchange within and between ISPs and IXPs,
several routing protocols and schemes take into account the most disparate
network metrics. Once there is no consensus on the best way to forward a
packet, the routing does not always yield in the shortest path possible.

1.1.4 Routing Protocols, Autonomous Systems, and In-
terconnection

The TCP/IP’s Internet Layer ensures the packet transfer from the source
until its desired destination. As a result, the network becomes an interface
with the required set of hops through ISPs and IXPs routers to fulfill the
end-to-end data delivery. As the physical network is unreliable, this layer
must be aware beforehand of the physical topology and the links conditions.
For example, network applications must carefully select the best routes to
transmit a packet without overloading the ISP backbones, which can im-
pact the overall infrastructure’s Quality of Service (QoS). Considering the
routing algorithms, they can be static or dynamic. The main difference
is that the dynamic routing considers the network performance metrics to
build a forwarding strategy. Therefore, it adapts its decision as the net-
work changes in terms of topology and traffic. Some routing algorithms
examples are the Directed Acyclic Graph (DAG), shortest path, flooding,
distance-vector distance, and link-state. Meanwhile, the routing algorithms
can consider some network performance as the number of hops, link delay,
and even the charges that a IXP may ask to deliver some packet.

Commonly, the intra-AS routing exploits the Open Shortest Path First
(OS) e Intermediate System to Intermediate System (IS-IS) [1]. Meanwhile,
inter-AS communication must comply with the commercial arrangements
between ISPs and countries. Hence, the local routing policies might be in-
complete because a given ISP does not have the complete network topology
awareness. In the current Internet, the inter-domain communication is gen-
erally the Border Gateway Protocol (BGP), which takes into account each
AS political, security, and economic policies [1,3].
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The BGP protocol exploits IXP connections, wherein an ISP is the client
of ISP provider. The ISP provider becomes responsible for delivering the
received data traffic to the desired destination without receiving meaning-
ful data that may compromise the ISP client. In short, the BGP applies
the distance-vector algorithm, which considers the ISPs policies to for-
ward data between IXPs. Each BGP router stores the used path that the
packet requires through the ASs, where this router communicates through
TCP/IP. The more specific details are out of the scope of this thesis, yet
BGP presents other variations as Internal Border Gateway Protocol (IBGP)
and External Border Gateway Protocol (EBGP).

1.1.5 Closing Remarks

This short presentation ascertains the complexity of the current Internet
and its routing scheme. This infrastructure encompasses heterogeneous
devices, protocols, and access methodologies that grant global connectivity
through the TCP/IP cornerstone. The Internet architecture standardizes
the way to address and locate any entity, as well as the way that they must
exchange their data through ASs. Nonetheless, the IP routing differences
are crucial for the overall network performance and QoS.

The current routing structure considers high-level policies to fulfill data
delivery. In other words, this must comply with its ISP business, political,
and economic policies to support the end-to-end connectivity. In this top-
down routing, it may not exploit the best strategy to ensure the best QoS.

In addition, the legacy network infrastructure presents a Control and
Data Plane that are vertically bound. This fact impacts the network evolv-
ability, hindering new applications, protocols, and services, which could
optimize the current scheme. Nonetheless, some efforts are dealing with
the rigidity and ossification of the current Internet. These evolutionary and
revolutionary proposals are the core theme of the next sub-chapter.

1.2 Future Internet

This section exposes some of the current Internet model challenges, the
current two philosophies to evolve the Internet infrastructure, and some
future scenarios where the Internet advancement is mandatory.

1.2.1 Current Pitfalls

In its nearly 60 years, the Internet infrastructure has been a success
since its inception. Starting from a network that connected academic and
military centers, ARPANET has reached unimaginable dimensions from what
its designers considered. Who could dream that this invention would change
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and shape society so profoundly in the 1960s/70s? As John Day, one of the
ARPANET pioneers, states in [2], clear limitations have marked the scope
of the project in terms of hardware, connections, and applications. Conse-
quently, many shortcuts, mistakes, and successes taken at that time aimed
at validating a prototype to foster further research and, thus, planned or-
ganic development. Nevertheless, the proposal was so successful at first [4]
that it soon conflicted with commercial and government interests, which de-
railed drastic changes in architectural design.

One assumption relates to its host-centric design [5], which has made
the Internet only a way of delivering data. During Internet’s conception,
the hardware was restricted. For instance, computers had similar specifi-
cations as the TX-2 with 320KB of memory, which has simulated the theory
of packet networks [6]. Hence, the network model suffered a segmentation
into layers wherein the upper layers perform more intelligent functions than
the lower ones that handle data transfer, flow control, and error.

However, this no longer reflects the current reality, as technological de-
velopment followed an advance based on Moore’s Law or, perhaps, the Law
of Accelerated Returns. There is enough technological abundance to fuel
the most revolutionary ideas. For example, the Internet is seen as one of the
drivers of what we are discussing today as Smart Cities, Industry 4.0 and,
eHealth, increasingly fostering the convergence of the digital and physical
world. Given this scenario, new questions arise regarding the feasibility of
continuing to use the current Internet architecture in the future [7]. There
is a list below containing five weaknesses of the current Internet.

Naming, Addressing, and Name Resolution

From the start, naming refers to the identification of an object in a given
scope. Addressing, on the other hand, represents a way of locating it. Thus,
a name is not necessarily an address [2]. Generally speaking, addresses are
ways of assigning references to connection points in a topology, facilitating
their discovery. Given this more ethereal aspect, naming and addressing
concepts still confuse several people and they impact on establishing an
effective and efficient project structure. As stated by John Day, this as-
pect is directly crucial to the success of a network proposal [2]. Returning
to ARPANET, the scenario by then was simpler to establish a relationship
between naming and addressing. This fact was due to technological and
geographical restrictions with homogeneous connection points regarding
hardware, quantity, and connectivity technologies. Thus, the adopted sys-
tem was to enumerate networks and the equipment interfaces that consti-
tuted them [2].

Nonetheless, the current scenario presents heterogeneous communica-
tion devices, such as computers, smartphones and sensors, and physical
means, like wired, mobile and satellite communication networks. In addi-
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tion to this, current networks are complex, interconnecting countries by the
most diverse providers and network paths. As its coverage expanded, the
Internet has received mechanisms to facilitate and guarantee the insertion
of new connections, the routing of packets, and the overall name resolution
on the network [4].

Mobility e Accountability

In the early days of the Internet, hosts were geographically fixed and
static. Hence, the researchers have discarded a scenario where mobile
devices exist [2]. Consequently, today’s infrastructure has been shaped to
provide addresses that would virtually represent the same hosts over time.
However, the Internet also started to connect dynamically mobile objects in
space due to the massification of smartphones and other mobile proposals
in recent years, such as autonomous cars, drones and sensors.

Currently, hosts experience address changes when switching across net-
work domains. Even though the application addresses are location inde-
pendent, the devices’ physical addresses alternate during this intermittent
exchange, causing route changes to ensure data delivery [8]. Even if a
name doesn’t change (what we want), its address (where should we look)
and the required route (how can we reach it) are dynamic due to intrinsic
characteristics of the TCP/IP stack.

This fact undermines the devices’ accountability on the Internet since
their addresses change over time. For example, when we request content in
the city of Santa Rita do Sapucaí, we have an IP address associated with our
device from a provider in that given area. When we move this same device
to another city, like São Paulo, we will have another IP address available.

Now consider a malicious device on the network. This feature of disasso-
ciating addresses and non-perpetual naming and addresses to devices can
help other possible attacks. In addition, some networking techniques en-
courage the concealment of the attackers’ real addresses, hindering their
traceability and restricting possible sanctions to prevent new attacks. As-
sociated with this, we can have several identical names in the same do-
main. This fact increases the network’s ability to resolve names to reach
the proper destination, wakening the security of applications [2].

Content Replication

In the same way that there is redundancy associated with names, today’s
Internet presents a high number of replied content around the network.
On the one hand, this is important to ensure continuous access to given
content, improving the quality of service seen by the consumer. As the
Internet’s framework does not require a direct connection to the destination
on an ongoing basis, the network presents copies of content spread across
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different servers or network caches. However, can we say that this content
replication in the network is optimized?

In an ever increasingly complex world, this question does not only impact
storage capacity or network performance. Environmental impacts must
also be considered in this equation, such as energy expenditure, carbon
dioxide emissions, and solid waste that keeps this storage infrastructure
always available and updated.

1.2.2 Internet Evolution

Considering these and other various weaknesses of the Internet, many
researchers have dedicated themselves to researching ways to evolve and
prepare an ecosystem capable of supporting the future’s trends. On the
one hand, proponents of the current architecture advocate incremental
improvements that update such infrastructure as new problems become
unbearable. On the other, revolutionaries develop proposals for network
architectures from scratch. Through these clean-slate architectures, de-
velopers choose contemporary concepts to foster the development of their
projects [7].

Through evolutionary projects, we can mention the evolution that the In-
ternet architecture underwent when going from a geographically restricted
communication network to a global one [9]. Under this new scale, the archi-
tecture has received new features for delivering packages, such as support
for mobility, multicast, and anycast, enabling distributed networks [4]. Con-
sequently, these improvements have conflicted with the host-centric nature
of the network, which assumes that hosts are immovables and that there is
only one destination per request. Thus, DNS emerged to resolve names, at-
tuning the new features with the architecture. Another example lies in the
protocol update from IPv4 to IPv6 due to the scarcity of available addresses
to support new applications and devices in the contemporary world [8,10].
Again, new challenges arise in terms of the scale of such challenging transi-
tion, routing scalability, security, mobility, and quality of service [8,11,12].

Revolutionaries, on the other hand, propose disruptive Future Internet
Architecture (FIA) as clean-slate designs. In this research area, the de-
sign incorporates paradigms that may reshape our concept of the Internet
from the physical layer to its application layer. Some examples break away
from the host-centric paradigm to focus on content-, mobility-, or service-
centric [4]. Furthermore, they may exploit contemporary concepts such as
Software Defined Network (SDN), resource virtualization, and other inno-
vative features in their conception [7]. Ergo, someone can expect that these
projects are more suitable for the future. After all, they take advantage of
the best that current technology has to offer while learning from the cur-
rent Internet takeaways. As can be seen, it is exceptionally troublesome
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to generalize all the FIA with their particular ingredients under a single
umbrella that fits all their particularities.

1.2.3 Fortune Telling and Closing Remarks

Promising new technologies have come to revolutionize the world. Among
these, we can cite the Internet of Things [13] as one of the main drivers of
the convergence of the physical and digital world, as it is one of the pil-
lars of trends in Autonomous Cars, Industry 4.0 [14] and Medicine 4.0 [15]
. Other technologies support this scenario, such as Big Data, Artificial In-
telligence, and Cloud Computing. As a result, some expect over 20 billion
IP connections on the Internet by 2023 [16]. Probably because they may
share today’s Internet as a way to interconnect everything, we’re back to
questioning whether this infrastructure will harmoniously accommodate or
limit the future’s potential.

As much as we have revolutionary proposals of Internet architectures,
we must also consider that perhaps the complete replacement of the cur-
rent architecture is not feasible [11]. Many investments have gotten us
where we are. Besides, an entire legacy infrastructure keeps the world
connected. Furthermore, we are used to such technology and have known
the current system’s robustness for years. Thus and for other reasons, a
doubt arises regarding the assumption that a single FIA may completely
replace the current Internet someday.

Despite this, a path to the coexistence of multiple network architectures
has been drawn through virtualization technologies, SDN, and post Fifth
Generation (5G) mobile networks lately [17]. In this heterogeneous ecosys-
tem, diverse architectures provide their best service by network slicing,
ensuring distinct operations under disjoint and varied requirements and
QoS [18, 19]. All this in an autonomous way, orchestrated in an impercep-
tible way to the end-user or application, while exploring the most diverse
communication technologies [7,20].

1.3 Technology Evolution and a Possible Fu-

ture

In this atypical current pandemic scenario, the world has relied essen-
tially on the Internet infrastructure to keep up with the “old world.” Through
this global network, society has adapted in the best way possible. For ex-
ample, videoconferences have supported from work to education meetings.
Suddenly, some tendencies that would take years to be studied and imple-
mented have become our reality in a short period to guarantee the estab-
lished deadlines, adapting some tasks at a pace never seen before.
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Some surveys show an increase in the Internet demand from 40% to
50%, a 16TB/s traffic peak in 2021 [21], and a proportional rise of com-
plaints related to the QoS provided. These facts are just a reflection of the
sudden reality, where we were able to adapt our social and professional life
through the Internet (e.g. education, leisure, and/or e-commerce/delivery).
However, what can we expect from the future?

Looking to the future, we can find academic and commercial proposals
to make environments “smart”. As an example, we can mention the trends
of Smart Cities, Industry 4.0, and eHealth. These and other Smart-* aim
to insert “intelligent” devices into our daily lives to facilitate contemporary
life. These systems are proposals distributed with a range of actuators and
sensors that allow automatic/autonomous decision-making. In whichever
trend, communication networks connect these devices in a myriad of ways.
Even more, we are talking about the Internet as the way to exchange data
in most of the cases, e.g. from a set IoTs devices or even the Internet of
Everything (IoT). Through all this kaleidoscope of globally interconnected
devices, technologies, and systems, something even more disruptive will
arise: the metaverse. This new frontier considers the total convergence of
the physical and the digital world, such as depicted in the Matrix, Ready
Player 1, or Tron movies. In sum, real entities have digital twins, which are
the virtual counterparts of reality [22].

Comparing an atypical situation to such disruptive proposals, what can
we expect from the current infrastructure of the Internet in this context?
Still, to what extent can evolutionary measures truly optimize an infrastruc-
ture that bases on assumptions that reflect a limited hardware reality at its
conception time? Even more, how will we enable the evolution of the In-
ternet that is harmonious with these disruptive visions? After all, will those
proposals perform their best possible service, or should they conform to
what they can obtain if we continue with the same architecture?

Therefore, we return to the topic of proposals for FIAs, SDNs, and other
technologies that are efforts to not only optimize the network infrastruc-
ture but also to promote better support for this future. FIAs focus on the
evolution of the Internet architecture itself, SDNs foster the better agility
and flexibility of the infrastructure of networks and future mobile networks
(post 5G) aim to encompass more areas, like the countryside. Through
these and other disruptive concepts, the future presents trends like net-
work slicing [19], wherein the network can be divided into several slices
to prioritize the transmitted data, and Intent-Based Networks, which can
be autonomous networks that are orchestrated through a high-level lan-
guage and Application Programming Interfaces (APIs). Nonetheless, there
are still several discussions on how this environment will be autonomously
composed and orchestrated.

Finally, what can we expect from the Internet of the future? Can we
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imagine that an FIA will be able to replace the entire TCP/IP model some-
day? We can argue that this proves unfeasible for financial, political, and
many other reasons that permeate an infrastructure of such global scale.
Thus, a more coherent strategy is to focus on proposals that enable the de-
mocratization of the Internet to take advantage of multi-architectures. As it
is presented on Chapter 3, the current FIAs are disjointed, advocating for
disparate concepts. Therefore is an open challenge to design an environ-
ment that synergetically aggregates those revolutionary proposals.

1.4 Objective

As a consequence, software-based IXPs can become crucial and promote
this multi-architectural network. In these future environments, control
agents dynamically leverage programmable network elements. These intel-
ligent controllers draw specific strategies to fulfill their architecture’s data
exchange, adapting their knowledge to meet the most diverse application
requirements at the Data Plane. Therefore, this multi-architectural network
connects clients of different and specialized architectures for unique ser-
vices by exploring software-based techniques, specialized controllers, and
programmable devices. In summary, each architecture performs its best
service harmonically with other proposals through programmable Future
Internet Exchange Points (FIXPs) and by their control agents.

Given all that has been exposed in this chapter so far, the primary ob-
jective of this work is to conceive a control agent for the revolutionary
FIA called NovaGenesis (NG). This architecture presents several features
that are common to other revolutionary proposals found in the literature.
Briefly, we can cite its name resolution, flat identifiers, and support for mo-
bility. Moreover, we seek to design a native NG SDN controller for the FIXP
project, i.e. an SDN exchange point focused on multi-architectures.

This approach is new in the literature. So far, it seems that any related
work has covered the conception of a native SDN controller for FIA. Every
proposal from Chapter 3 combines FIAs and SDN, yet all of them focuses
on the Data Plane programmability. None presents a native controller.

We also present a programmable NG Programming Protocol-Independent
Packet Processors (P4)-based Data Plane. Through this, we can create a
methodology that supports NG novelties.

Finally, a scientific methodology validates the NG control agent proto-
type for FIXP. For this, we explore the NG Content and Distribution Appli-
cation scenario, measuring the NG, the FIXP, and the host performances.
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1.5 Main Contributions

In brief, the main contributions of this work are the following:

1. Design of a native NG control agent for FIXP.

2. Design of a programmable Data Plane for NG, which supports all of its
novelties.

3. Propose an evaluation methodology that covers the NG, FIXP, and its
host machine performance.

1.6 Publications, Projects, and Scientific Di-

vulgation

During the development of this work, there were some opportunities to
present NG, FIA, and other subjects. These opportunities ranges from sci-
entific publications, collaboration in other projects, and some diverse pre-
sentations. From these, two conference papers were awarded as best pa-
per of their workshops. Meanwhile, the author has received one award as
feature student co-author from the 2016-2020 quadrennium at Inatel. The
projects were supported by the partnership between ICT Lab, Inatel Com-
petence Center, and Inatel. From these, the Smart Garden project received
media coverage from national television stations.

The complete masters’ journey is summarized in the following lists:

1.6.1 Publications

(i) T. B. da Silva, R. S. Chaib, A. C. S., R. d. R. Righi and A. M. Alberti,
"Towards Future Internet of Things Experimentation and Evaluation,"
in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3114540.

(ii) SILVA, Thiago B. da; GAVAZZA, José A.T.; VERDI, Fábio L.; SURUAGY,
José A.; MELO, Juliano Coelho; SILVA, Flávio de O.; ALBERTI, Anto-
nio M. Plano de Controle da Arquitetura NovaGenesis para um Ponto
de Interconexão de Tráfego Multi-Arquitetura. In: WORKSHOP DE
PESQUISA EXPERIMENTAL DA INTERNET DO FUTURO (WPEIF),
12., 2021, Evento Online. Anais do XI Workshop de Pesquisa
Experimental da Internet do Futuro. Porto Alegre: Sociedade
Brasileira de Computação, 2021 . p. 31-36. ISSN 2595-2692.

(iii) SANTOS, Jose R.; REZENDE, Tiberio T.; SILVA, Thiago B. da; ROSA-
RIO, Elcio C.; ALBERTI, Antonio M. Proposta de Arquitetura para
Distribui- çao de Conteudos Nomeados em NovaGenesis com P4. Anais
do XI Workshop de Pesquisa Experimental da Internet do Fu-
turo, Rio de Janeiro, p. (32-37), 2020. Available in: https://sol.sbc.org.
br/index.php/wpeif/article/view/12472.



14 1.6. Publications, Projects, and Scientific Divulgation Chapter 1

(iv) LUGLI, Alexandre B.; ALBERTI, Antônio M.; PIMENTA, Tales C.; SILVA,
Thiago B. da. A Study on Some Industry 4.0 Key Technologies. ICIC
Express Letters, p. (713–720), Volume 11, Issue 8, Aug. 2020. Avail-
able in: http://www.icicelb.org/ellb/contents/2020/8/elb-11-08-01.pdf.

(v) SILVA, Thiago B. da; MORAIS, Everton S. de; ALMEIDA, Luiz F. F. de;
RIGHI, Rodrigo da R.; ALBERTI, Antônio M. Blockchain and Industry
4.0: Overview, Convergence, and Analysis. In: Rosa Righi R., Alberti
A., Singh M. (eds) Blockchain Technology for Industry 4.0. Blockchain
Technologies. Springer, Singapore. Available in: https://doi.org/10.10
07/978-981-15-1137-0_2.

(vi) GAVAZZA, José A.T.; MELO, Juliano Coelho; SILVA, Thiago Bueno da;
ALBERTI, Antônio Marcos; ROSA, Pedro F.; SILVA, Flávio de O.; VERDI,
Fábio L.; SURUAGY, José A. Future Internet Exchange Point (FIXP):
Enabling Future Internet Architectures Interconnection. In: Barolli L.,
Amato F., Moscato F., Enokido T., Takizawa M. (eds) Advanced Infor-
mation Networking and Applications. AINA 2020. Advances in Intelli-
gent Systems and Computing, vol 1151. Springer, Cham. https://doi.
org/10.1007/978-3-030-44041-1_62.

(vii) ROSÁRIO, Élcio C.; D’ÁVILA, Victor H., SILVA, Thiago B. da; ALBERTI,
Antônio M. A Docker-Based Platform for Future Internet Experimen-
tation: Test-ing NovaGenesis Name Resolution.IEEE Latin-American
Confer-ence on Communications (LATINCOM), Salvador, p. (1-5), 2019.
Available in: https://ieeexplore.ieee.org/document/8937898.

(viii) SILVA, Thiago B. da; ALBERTI, Antônio M., LUGLI, Alexandre B. In-
trospecções da Indústria 4.0: Um estudo sobre a convergência de tec-
nologias disruptivas e o seu impacto na indústria do futuro. In: Con-
gresso Brasileiro de Instrumentação, Sistemas e Automação. Camp-
inas, São Paulo, Brazil, 2019. Available in: https://proceedings.science
/cobisa-2019/papers/introspeccoes-da-industria-4-0–um-estudo-sobre-a-
convergencia-de-tecnologias-disruptivas-e-o-seu-impacto-na-industria-
d.

1.6.2 Submitted Manuscripts

(i) T. B. da Silva, L. Verdi, Fabio, Coelho Gonçalves de Melo, Juliano, Au-
gusto Suruagy, José, Silva, Flavio, and A. M. Alberti, "A NovaGenesis
enabled Future Internet eXchange Point," in IEEE Network Magazine.

1.6.3 Awards

(i) Best article award at the XII Experimental Research Workshop on the
Internet of the Future (WPEIF 2021). Authors: Thiago Bueno da Silva,
Jose Gavazza, Fabio Verdi, José Augusto Suruagy Monteiro, Juliano
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Melo, Flavio Silva. Work: "Plano de Controle da Arquitetura NovaGe-
nesis para um Ponto de Interconexão de Tráfego Multi-Arquitetura".

(ii) Feature co-author student of outstanding bibliographic and technical
productions. Quadrennium 2016-2020, Inatel.

(iii) Best article award at the XI Experimental Research Workshop on the
Internet of the Future (WPEIF 2020). Authors: José Rodrigo Santos,
Tibério Tavares Rezende, Thiago Bueno da Silva, Elcio Carlos Rosário,
Antônio Marcos Alberti. Work: "Proposta de Arquitetura para Dis-
tribuição de Conteúdos Nomeados em NovaGenesis com P4".

1.6.4 Scientific Presententations

(i) SILVA, Thiago B. da; ALBERTI, Antônio M.. Redes Programáveis de
Próxima Geração: Habilitando Múltiplas Internets e Suportando a Pro-
posta NovaGenesis. TDC Transformation Conference, 2021.

(ii) PADINHA, Mariana; SILVA, Thiago B. da; ALBERTI, Antônio M.. Papo
Ciência e Tecnologia - ICT Lab e RenaSCidade: Qual é o futuro da
Internet e das redes programáveis? 2021. Available in: .

(iii) SILVA, Thiago B. da; ALBERTI, Antônio M., LUGLI, Alexandre B. In-
trospecções da Indústria 4.0: Um estudo sobre a convergência de tec-
nologias disruptivas e o seu impacto na indústria do futuro. In: Con-
gresso Brasileiro de Instrumentação, Sistemas e Automação. Camp-
inas, São Paulo, Brazil, 2019.

(iv) Globo Rural. Extra Globo Rural: internet ampla pode levar mais cidada-
nia ao campo. 2020. Available in: https://eubrasilcloudforum.eu/en/service-
demo/demonstration-future-internet-things-novagenesis.

(v) RNP. Projeto usa tecnologia 5G para conectar escola rural em Minas
Gerais. 2019. Available in: .

(vi) Inatel. Inatel recebe pesquisadores do Brasil e do exterior para re-
união do projeto 5G Range. 2019. Available in: .

1.7 Thesis Organization

This dissertation has six more chapters. Chapter 2 addresses the rele-
vant works to understand the proposal of this document, these being trends,
technologies, and architectures of SDN, P4, FIXP, and NG. After this the-
oretical presentation, Chapter 3 presents a literary review of the current
state of the art of FIA and SDN, focusing on proposals with P4. Given
the theoretical basis and what is being proposed by the academic com-
munity, Chapter 4 presents the proposal of a NovaGenesis Control Agent
with Future Internet eXchange Point. Then, Chapter 5 presents the tools
and methodology to validate the proposal of this work. In turn, Chapter 6

https://www.youtube.com/watch?v=5jG2qkofSMM&t=1s
https://globoplay.globo.com/v/8221512/
https://globoplay.globo.com/v/8221512/
https://www.rnp.br/noticias/projeto-usa-tecnologia-5g-para-conectar-escola-rural-em-minas-gerais
https://inatel.br/imprensa/noticias/pesquisa-e-inovacao/3305-inatel-recebe-pesquisadores-do-brasil-e-do-exterior-para-reuniao-do-projeto-5g-range
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presents the results obtained through the adopted methodology and consid-
ers what was validated. Finally, Chapter 7 presents the conclusions of this
work, together with possible future works to advance this proposal even
further and the lessons learned.



Chapter 2

Background

THIS chapter presents the required background to support this Masters’
proposal. Therefore, it firstly focuses on the SDN technology and its

benefits. After this, it explores a SDN architecture called P4, which mod-
els and enables programmable forwarding network devices. Following, it
introduces the FIXP project, introducing this multi-architecture SDN envi-
ronment. At last, it shows the NG architecture, covering its main concepts,
benefits, and communication scheme.

2.1 Software Defined Network

This section explores the SDN technology, exposing what has led to its
development, its concepts, and some of its advantages.

2.1.1 Network Infrastructure Ossification

Along to the Internet’s structural rigidity, the network devices that op-
erate in Internet’s lower layers are also ossified. Historically, switching
devices and routers are inflexible, virtually immutable due to the intrinsic
traits associated with their chips [23]. Hence, the conventional network
hardware is a vertical device, which performs functions from the data and
the control planes. Furthermore, any innovation must come firstly from
their developers and manufacturers, following a top-down model. Conse-
quently, this fact limits possible improvements during the device’s lifetime
(excepting firmware updates). Moreover, it also hinders the experimenta-
tion with new communication protocols and architectures.

Besides, we can mention the complexity of managing the current IP
networks as well. This feature goes beyond the aspect of controlling a
highly decentralized infrastructure [11]. Despite having been an assump-
tion that has increased the robustness of the entire network to date, the
contemporary heterogeneity of network solutions hampers the network op-

17
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erators [11]. For example, these operators need to individually change the
operating rules of each device present in a network scope to change a single
network policy. Moreover, this adjustment must follow the vendor-specific
standard commands [11]. When we consider a geographically ample topol-
ogy, this impacts the scalability and agility of updating a network domain
because of its various distinct equipment.

Grasping the future, there is a considerable challenge for developers and
network operators. How shall we move towards a society relying notably
on a virtual world when we have not only a limited Internet architecture
but also an ossified infrastructure at hand? By converging the physical and
digital worlds through Smart Cities [24], Industry 4.0 [25], and other pro-
posals [26,27], we need to consider not only new personal devices, but also
sensors, applications, and other entities that represent animate or inani-
mate physical objects connected globally [28, 29]. Consequently, devices
and network addresses will increase exponentially, as well as the network
traffic associated with the actual data and the management data to ensure
the smooth operation of the entire network infrastructure [7].

2.1.2 Network Infrastructure Evolution

Addressing these challenges, SDN proposes the vertical separation of the
control and data planes by employing techniques and abstractions to virtu-
alize the network [11]. Therefore, the network infrastructure becomes di-
vided into flexible, programmable, and customized forwarding and control-
ling devices. This means that SDN programmable forwarding devices can
be used for different network applications by only updating its source code.
At the same time, controllers centralize the required intelligence to man-
age several programmable forwarding devices [11,30]. Consequently, cen-
tralized controllers optimizes the network operation, increasing the agility,
granularity, and evolvability while reducing overall costs [4]. OpenFlow
protocol is one of the first SDN technologies released in 2011 [31].

Figure 2.1 illustrates the generic architecture of an SDN topology. In
this, there are 3 specific planes with equipment spread in each layer and
standardized interfaces, interconnecting each sphere. The list below char-
acterizes the most common SDN concepts [11,30,31]:

1. Data Plane: Features programmable forwarding devices that are phys-
ically and/or virtually interconnected to exchange data.

2. SDN Forwarding Devices: Programmable forwarding devices in the
Data Plane. These devices can be either physical hardware or virtu-
alized software. In addition, these devices are modeled by the basic
operations that a network equipment has to perform. Furthermore,
these devices are dynamic, configured with new network rules in real-
time during their activity by the SDN controllers.
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3. Open Southbound API: Interconnects the Control and Data Planes,
standardizing the communication between data devices and controllers.

4. Control Plane: Presents the SDN controllers spread geographically
and interconnected horizontally, exchanging data between controllers,
or vertically, interacting with the Management and Data Planes.

5. SDN Controllers: Manage the SDN forwarding devices, dynamically
updating their network rules. Furthermore, SDN controllers cooper-
ate with network applications in the Management Plane to optimize
their intelligence and management of the entire topology.

6. Open Northbound API: Establishes the interconnection between con-
trollers and network applications.

7. Management Plane: Presents network applications to manage net-
work policies and update SDN controllers in real-time.

8. Network Applications: Leverages the control and logical operation of
the network. Through the northbound interface API, network appli-
cations can update the network policies of each SDN controller, e.g.
routing, load balancing, and monitoring definitions.
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Figure 2.1: Generic SDN architecture. Adapted from [11].
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2.1.3 Fortune Telling and Closing Remarks

SDN technology disrupts the network field by separating the Data and
Control Planes, dealing with the ossification of network equipment. Pro-
grammable forwarding devices are modeled for network applications, en-
suring the independent network evolution while enabling the experimen-
tation with new protocols and communication technologies [23, 32]. Such
flexibility facilitates the granular control of the network, modeling it by ab-
stractions that help the management of each equipment for a homogeneous
operation of the entire infrastructure [11].

This technology has attracted attention from both academically and com-
mercially [33]. Despite presenting expensive hardware, these devices are
becoming more affordable as it becomes more popular and acceptable [11].
In such a way, it can be noticed its adoption in infrastructures of the current
Internet, in data-center networks, and industrial networks [31].

Concerning future scenarios, the SDN technology guarantees not only
the optimization of data traffic, which tends to increase exponentially but
also encourages the development of new technologies. Hence, both the
FIA and communication technology communities benefit as they can now
mold equipment capable of operating under their requirements. Further-
more, centralized controllers or Network Operating System (NOS) oversee
the physical topology, orchestrating both the dynamic reconfiguration and
enforcing the network policies [11]. Consequently, both the network perfor-
mance and the use of resources are optimized, which are configured under
metrics for balancing traffic according to its operation, e.g. aiming at the
best possible QoS. Furthermore, it grants greater security to the entire
infrastructure by enabling granular control of devices, identifying possible
attacks, and countering attacks in real-time.

2.2 P4

This sub-chapter presents a brief P4 introduction, covering its highlights,
the P4’s pipeline, language, compilers, and some additional remarks.

2.2.1 P4 highlights

Bosshart et al. propose P4 as a path of how OpenFlow should evolve,
taking into account that the increased complexity of OpenFlow’s fields did
not add any flexibility to add new protocol headers [30]. Ergo, P4 has posed
as a feasible alternative, advocating for a remarkable level of abstraction,
customizability, and programmability of network equipment [23,33,34]. In
this view, P4 is similar to what C/C++ languages are for embedded devices,
where the P4 language abstracts the target device, which can be a physical
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or software switch, network interface card, router, or network appliance
[35]. Since 2014, P4 Language Consortium and Open Network Foundation
develop and support this proposal [36], focusing on advancing the language,
API, architecture, and education of this framework.

P4 also establishes a Southbound API [30], standardizing how to manage
P4-enabled devices on the fly. For example, this aspect enables the mod-
ification of the P4 devices’ routing tables, adding new forwarding rules,
or retrieving some feedback from their status. All of this has arisen over
the years with improvements in the P4 framework or introducing a new
switch Operational Systems (OSs) that cooperates with P4 like Stratum
[37]. Nonetheless, every new P4 update follows three major goals that
are [30]:

• Reconfigurability: P4 shall enable changes on how the forwarding
devices process packets during their execution.

• Protocol Independence: P4 shall support any network protocol.

• Target Independence: P4 shall program the packet processing be-
havior of any hardware, without knowing the details of target devices.

2.2.2 Protocol Independent Switch Architecture

P4 follows the Protocol Independent Switch Architecture (PISA) model
to establish a forwarding device behavior. This standard sets up how P4 en-
ables the Data Plane (DP) customization of a target device [35], in terms of
how the hardware or software must process the packets, the Control Plane
(CP) and Data Plane (DP) intercommunication, as well as its limitations.
One of P4 restrictions regards the inability of Control Plane (CP) modeling
behavior. In other words, P4 solely models the DP devices, whereas a South-
bound API called P4 Runtime must ensure the dynamical CP management.
Figure 2.2 illustrates the PISA model. This has been adapted from [30].

The PISA ensures target and protocol independence once it designs P4
behavior as a finite state machine [30]. Following the packet input flow,
packets arrive at a given Ingress Port. Next, the Parser handles the arriv-
ing packets, which translates bytes into the modeled protocol headers from
the P4 program model. After this, a set of serial or parallel matches/actions
fulfill a determined operation. For example, this stage may modify the in-
coming data to adapt it to a given different output protocol or replicate the
packet into several Egress Ports for a multicast rule. Likewise, the Egress
Pipeline presents another set of match/action that may modify the received
packet. After this, it assembles the data into a packet to forward it to the
proper Egress Port(s). Along to this, P4 Runtime can modify the P4 target
Ingress and Egress Pipelines through delineated primitives received.

Notice that the Buffer and Output blocks can implement queues to con-
trol the data traffic. Along through these blocks, additional metadata are
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Figure 2.2: P4 abstract forwarding model. Adapted from [29].

bound to the packet, which retrieves information regarding the packet’s
Ingress Port or timestamp for packet scheduling [30].

2.2.3 P4 Language

Following the PISA organization, P4 language models the packet pro-
cessing behavior as a finite state machine. Each state represents a block of
the Input, Parser, Ingress, Egress, and Deparser (Output). In addition, a de-
veloper can implement some Checksum verification and add some custom
definitions that describes the P4 variables, registers, structs, and headers.
Therefore, the P4 program present some key components that represents
these states/blocks, as well as what triggers the transition from a state to
another, like from the Parser to the Ingress Pipeline.

The full P4 program and syntax description is out of the scope of this
dissertation (you can check the P4 16 specification in [35]). Nonetheless,
the following list summarizes the main concepts of a P4 program [30,33,35]:

• Header: This structure describes the set of fields that comprises a
protocol. In other words, the developer must know in depth what each
group of bytes means to model a protocol header. For example, an
Ethernet P4 header must present the definition of how many bytes and
their order to construct the Destination Media Access Control (MAC),
the Source MAC, the Ethertype, and the Ethernet payload.

• Parsers: This establishes the procedures to parse an incoming packet,
where the header fields receive their specified values. For example, P4
parses an Ethernet packet following the protocol order, i.e. the first
6 bytes represents the Destination MAC, the following 6 bytes defines
the Source MAC, and so on. Considering protocols that exploits other
standard as a encapsulating mean, such as Low-Power Wide-Area Net-
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works (LoWPANs) over Ethernet, the developer can add intermediary
parsing from the outer stacks to the inner ones. For example, the first
parsing can consider the IEEE802.11 structure as the first parser and,
then, follow to the specific LoWPAN fields in a second parser.

• Tables: Match and Action Tables outline the keys and actions for
packet processing. This structure links header variables to a set of
keys to define processing actions for a protocol. For example, an IP
table may resolve the IP destination address as a key to forward an
incoming IP packet. This table also lists the actions to forward, drop,
or a the default action if the key does not match any knowledge.

• Actions: Actions establishes processing functions. For example, an
action can receive parameters, modify fields in the received packet,
and set the egress port. There are several P4 primitives to allow a
miscellaneous set of packet operation and forwarding.

It is important to note that the P4 structure ensures a high level of
abstractions, fostering compatibility with vast targets, regardless of their
physical or virtual nature [23,33]. This pipeline enables compilers to gen-
erate files to be executed on actual targets. The compiler’s takes as an input
the P4 program and outputs a C source code, a JSON, binary executable, or
any other chosen format. This output embodies the P4 target behavior, a
programmable parser that process packets based on customized settings.

2.2.4 Control Plane, P4Runtime, and P4 Primitives

As can be seen so far, P4 is a framework to program data plane de-
vices without deep knowledge of the actual targets. In broad, P4 models
the packet processing of data plane devices in terms of protocols headers,
which parses packets into meaningful P4 variables. Moreover, P4 tables
that lists all the actions for a given architecture, as well as the relevant
keys to select and execute each action. Then, P4 actions may modify the
incoming packets and generate egress packets properly. Notwithstanding,
one question can come to mind... How can one supply instructions for the
P4 on the fly? How a P4 control plane can manage its data plane?

Nowadays, there is more than one choice to perform the communica-
tion between the data plane devices and their controllers. Some controller
framework examples ranges from the P4Runtime [38], the Behavioral Model
version 2 (BMv2) [39], and Open vSwitch for P4 [40, 41]. In brief, any of
these tools are standards to set the P4 targets in real-time. Meanwhile,
the in-depth explanation of these are out of the scope of this dissertation.
Nonetheless, they provide P4 primitives to configure P4 tables, keys, and
actions to support the appropriate deployment and operation of the targets.
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2.2.5 Closing Remarks

P4 has received momentum from the network community. The overall P4
architecture has matured over the years, evolving from the initial proposal
[30] to broaden its scope for other network devices [33]. This standard has
also evolved to surpass new challenges, being currently in the P4 16 version
[35]. Some tools are proposed to encourage and ease the P4 deployment
as the mentioned controller framework, as well as contemporary OS like
Stratum [37] from Open Networking Foundation (ONF).

2.3 FIXP

FIXP [42, 43] is a project developed taking advantage of the SDN tech-
nology [42]. Therefore, it leverages a multi-architec- ture network environ-
ment, wherein its core is P4-based forwarding devices, i.e. FIXP switches
capable of receiving, processing, and forwarding packets from distinct ar-
chitecture sources. Therefore, this Hardware (HW) is flexible enough to
accommodate various functionalities and architectures. Currently, FIXP for-
wards data from the NG, ETArch, and TCP/IP architectures.

It is also important to mention that the FIXP proposal is sponsored by the
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), through
the grant number #2015/24518-4. This study was also financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES) – Finance Code 001. Moreover, it is has the collaboration between
the Universidade Federal de Uberlândia (UFU), Universidade Federal de
São Carlos - Sorocaba (UFSCar - Sorocaba), Universidade Federal de Per-
nambuco (UFPE), and Instituto Nacional de Telecomunicações (INATEL).

2.3.1 Hardware Design

Regarding the FIXP project, it has three different layers. The first is
named Physical Layer (PL), which focuses on the logical connection of de-
vices and data exchange. The second is the Abstraction Layer (AL), which is
a middleware between the Data and the Control Planes. Finally, the Control
Layer (CL) has the main function to receive unknown packets from the un-
derlying CP and discover the best way to set the underlying FIXP switches.
Figure 2.3 illustrates this concept and Figure 2.5 shows the interaction be-
tween each layer, component, and services inside the FIXP architecture.

Firstly, the PL fosters the interconnection of the network elements, in-
terconnecting distinct network domains, exchanging data from different ar-
chitectures (1) (12). Meanwhile, it is crucial to note that this layer can be
composed of several FIXPs, as illustrated in Figure 2.4.

Moreover, the FIXPs are modeled by the FIXP.P4 (Figure 2.5). This
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Figure 2.3: FIXP architecture overview. Adapted from [40].

source code defines the overall operation of a FIXP, providing the frame-
work that understands the architectures’ headers and provides the required
Routing Tables (RTs). Whenever a new packet is received, FIXP.P4 parses
this packet, checking if the routing key has a match in a RT. If there is
a match, it forwards the packet to the respective egress port to reach its
destination (12). Otherwise, the data goes to the AL (2). Alongside FIXP.P4,
another program called FIXP Rule Handler Service (FRHS) executes in par-
allel. This Python program deals only with FIXP incoming primitives. In its
operation scope, it can set the FIXP on the run (6) and notify the CP about
the success of any configuration by an Acknowledgement (Ack) packet (8).

In its turn, the AL has the essential purpose in coordinating different ar-
chitectures packets, regardless of the architecture or the underlying switch.
In this way, this layer has the Python scripts FIXP Switch Packet Handler
(FSPH) and FIXP Controller Packet Handler (FCPH). The first application



26 2.3. FIXP Chapter 2

Figure 2.4: Example of any FIXP logical connection and its concepts of Data, Ab-
straction, and Control Layers.

Figure 2.5: FIXP internal architecture. Adapted from [49].

inspects the received packets from the PL and decides which controller
must receive a given request. If this data is incoming from a host (2) or
represents a Ack primitive (8), it selects the proper network interface for
the desired controller (3). On the other hand, FCPH deals with the contrary
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flow from CP to the DP, forwarding the FIXP primitives (4) to its proper
underlying FIXP Switch (5) or translating the reinsertion primitive (10) into
the novel architecture standard to forward to the desired FIXP Switch (11).

Finally, CL accommodates the required controllers to support the FIXP
operation. These controllers are disjointed, where each one implements an
independent strategy to support its architecture. Regardless of the spe-
cific architecture, the controllers provide the necessary intelligence for the
configuration of FIXPs in real-time. At the moment, the scenario runs with
three different controllers, one for NG, one for ETArch and one for TCP/IP.

To summarize, each layer has its purposes, exchanging data from the
original architectures or FIXP control data necessary to to leverage the net-
work communication. Moreover, the CL can present several control agents
that oversees the PL according to a specific strategy. In this case, FIXP does
not define the best way to build this knowledge in the CP, it does not even
require the reinsertion packet if the developers decide not to encompass
this trickery. If they choose so, the successful Ack packet is the threshold
to discard the original packet anytime. Therefore, the path of (10) and (11)
does not exist in this case. After the proper configuration of the underlying
FIXP, the underlying switch directly forwards any incoming packet (1).

2.3.2 FIXP Control Primitives

FIXP characterizes some primitive patterns to allow the configuration
of the underlying devices in a transparent, flexible, and suitable manner
to any architecture. Therefore, the controllers must model such primitives,
encapsulating them in an Ethernet frame for the inter-FIXP communication.

Regardless of the primitive type, the controller agent must follow a com-
mon header that is applied to the Ethernet frame. Table 2.1 briefs the
generic FIXP primitive fields, which are explained as follows below:

• Destination Address 1 : Value representing the destination MAC of
the Ethernet packet with 6 bytes.

• Source Address: Value representing the source MAC of the Ethernet
packet. Like the Ethernet Protocol standard, it has 6 bytes.

• Ethertype: Value representing the protocol type encapsulated in the
Ethernet frame with 2 bytes. This field may take the specific Ether-
types from NG, ETArch, TCP/IP, or “0x0900” for the FIXP control pro-
tocol. Like the Ethernet Protocol standard, it has 2 bytes.

• Payload: Encapsulates the FIXP primitives, ranging from 46 to 1500
bytes.

1Whenever a MAC is configured as this, it follows the ASCII table pattern. This yields
that ’F’ = 0x46, ’I’ = 0x49, ’X’=0x58, ’P’=0x50, ’0’=0x30, and so on. In other words,
‘F’:‘I’:‘X’:‘P’:‘0’:‘0’ is the same as 46:49:58:50:30:30.
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Table 2.1: FIXP Generic Control Primitive Example.

Ethernet Frame
Description Content Example
Destination Address FIXP MAC ‘F’:‘I’:‘X’:‘P’:‘0’:‘0’
Source Address Controller MAC AA:BB:CC:DD:EE:FF
Ethertype FIXP Protocol 0x0900
Payload FIXP Primitive Desired Primitive

Furthermore, each Ethernet frame’s payload must comply with the FIXP
primitive standard. For this, JSON is the standard adopted to set these
fields flexibly and acceptably, as it is also a widespread format in other In-
ternet data structures and applications. Figure 2.6 conveys the three types
of possible data, which are individually explained in the next subsections.

FIXP JSON Object

FIXP Primitive

Architecture 
Identi�er Integer Value

Switch  
Identi�er 3 bytes String

Primitive
Sequence
Identi�er

Integer Value

Thrift Port
Identi�er Integer Value

Command
Identi�er Integer Value

Routing Table
Name String

Keys 
List List of Strings

Actions 
List List of Strings

Action
Parameters List List of Strings

Primitive 
Option Integer Value

FIXP
Acknowledge

Architecture 
Identi�er Integer Value

Switch  
Identi�er 3 bytes String

Primitive
Sequence
Identi�er

Integer Value

Thrift Port
Identi�er Integer Value

Command
Identi�er Integer Value

Handle 
List List of Strings

Status Integer Value

FIXP
Reinsertion

Architecture 
Identi�er Integer Value

Switch  
Identi�er 3 bytes String

Command 
Identi�er Integer Value

Original  
Packet String

FIXP Primitive

Figure 2.6: FIXP Primitives JSON tree structure.
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2.3.3 Table Add-Modify

Through the Table Add-Modify primitive, controllers can modify or add
an entry in their architecture’s FIXP RTs. Table 2.2 sets out the parameters
needed to perform this function. The required fields are explained bellow:

• Ethertype: Designates the architecture that will be affected by the
primitive. In other words, it must be the value of 2 bytes that yields to
the Ethertype of the desired protocol, e.g. NG is 0x1234.

• Switch Identifier: Points to which switch shall receive the primitive.
This field is expressed on a 3 bytes string that conveys to the pattern
“s<switchNumber>”, wherein switchNumber varies from 00 to 99.

• Primitive Sequence Identifier: Represents a sequential number that
traces the primitive packets, linking Ack and setting primitives. This
field must be an integer number that fits 1 byte.

• Thrift-Port Identifier: Designates which thrift port is used to config-
ure the switch. This fields must be an integer number.

• Command Identifier: Designates the primitive command, so the FRHS
decodes it into the required P4 action. This field is an integer number.

• Routing Table Name: Specifies which P4 Routing Table should be
modified, being vital for FIXP multi-architecture environment. It fol-
lows the BMv2 pattern “FIXP_Switch_Ingress.Table_Name.”

• Keys List: Highlights the parameters to be entered or modified in
P4 RT. In the case of NG architecture, this field specifies the Host
Identifier (HID) routing key. This field must convey a list of strings.

• Actions List: Delineates the P4 action that must be modified. This fol-
lows the BMv2 pattern “FIXP_Switch_Ingress.Architecture_Action_
Name” and it conveys a list of strings.

• Action Parameters List: Drawns the parameters to be inserted in
the required P4 action. For Table Add or Table Modify, it conveys the
Egress Ports. This field is a list of strings.

• Primitive Option: For the Table Add-Modify primitive, it distinguishes
two distinct actions: the value “0” adds a new key on its RT, while “1”
modifies a previous entry. This field is an integer of 1 byte.

2.3.4 Primitive Acknowledgement Primitive

Whenever FSPH translates a primitive into a BMv2 pattern and sets the
FIXP switch through its Thrift Port, it also retrieves the configuration status.
At this moment, BMv2 can return a success or a failure for any reason.
Based on this, FSPH generates an Ack packet to the controller and this
controller becomes aware of the advancements in the PL.

Table 2.3 illustrates the Ack of a Table Add-Modify primitive, encoded in
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Table 2.2: Table Add-Modify Primitive Parameters.

Ethernet Frame
Description Content Example

Destination Address 6 bytes ‘F’:‘I’:‘X’:‘P’:‘0’:‘1’
Source Address 6 bytes ‘N’:‘G’:‘C’:‘O’:‘N’:‘T’
Ethertype 2 bytes 0x0900

P
a
y
l
o
a
d

Architecture
Identifier

Integer 0x1234

Primitive Sequence
Identifier

Integer 1

Switch Identifier 3 bytes string “s01"
Thrift-Port Identifier Integer 9090
Command Identifier Integer 1
Routing Table Name String “FIXP_Switch_Ingress.novagenesis_ forward"

Key List List of strings
{

[“HID_1"]
}

Actions List List of strings

{
[“FIXP_Switch_Ingress.novagenesis_

SetSpec"]
}

Action Parameters
List

List of strings
{

[3]
}

Primitive Option Integer 0 (add) ou 1 (modify)

the JSON format. As some parameters are common to the Table Add-Modify
primitive, this table focuses on the specific Ack fields.

• Handle List: It is an performed action identifier, which is another
way to access this operation later.

• Status: FCPH sets this field with “1” to convey a successful command
and “0” for a failure.

Table 2.3: Primitive Acknowledgment Parameters Reply.

Ethernet Frame
Description Content Example

Destination Address Hexadecimal ‘N’:‘G’:‘C’:‘O’:‘N’:‘T’
Source Address Hexadecimal ‘F’:‘I’:‘X’:‘P’:‘0’:‘1’
Ethertype Hexadecimal 0x0900

P
a
y
l
o
a
d

Architecture
Identifier

Integer 0x1234

Primitive Sequence
Identifier

Integer 1

Switch Identifier 3 bytes String “s01”
Thrift-Port Identifier Integer 9090
Command Identifier Integer 1
Handle List String [ ... ]
Status Integer 0 (fail) ou 1 (success)
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2.3.5 Reinsertion Packet

FIXP considers the likelihood of a controller reinserting an original packet.
For every unknown packet, a controller can discard or store this data for
reinsertion after receiving a successful Ack. For the latter, Table 2.4 de-
scribes the Reinsertion Primitive packet, encoded in JSON. This primitive
shares some common fields and the list below presents its specifics fields.

• Original Packet: This field must be the exact original packet received
by the controller. Through this field, the AL deparses the JSON object
and forwards the original packet to the FIXP.

Table 2.4: Reinsertion Primitive Parameters.

Ethernet Frame
Description Content Example

Destination Address Hexadecimal ‘F’:‘I’:‘X’:‘P’:‘0’:‘1’
Source Address Hexadecimal ‘N’:‘G’:‘C’:‘O’:‘N’:‘T’
Ethertype Hexadecimal 0x0900

PAY
LOAD

Architecture
Identifier

Integer 0x1234

Switch Identifier 3 bytes String “s01”
Command Identifier Integer ‘5’
Original Packet Multiple Bytes Original Packet Content

2.3.6 Example of a Packet Flow in the FIXP scenario

This section presents an example of how FIXP forwards a hypothetical
and generic packet through the interaction between its layers and software.
Notwithstanding, it is worth mentioning that there is no concern in actually
portraying how a given architecture behaves in this environment at this
moment. This is going to be exploited in the further sections to explain how
NG manages the FIXP environment. Figure 2.7 depicts the interaction of
the solution demonstrated under the layered vision of FIXP.

For instance, consider that a host wishes to reach Host 2 through the
FIXP HW. This communicating device sends a packet in its novel architec-
ture protocol, i.e. with its known ethertype, and CL receives this frame (1)
on its specific FIXP Ingress Port (IngPort). Since P4 language has already
a model of this architecture, the FIXP.P4 parsers the packet, decoding the
frame fields based on the precise headers. Thus, it gathers the destination
Identifier (ID) and other relevant data. Through these data, FIXP looks up
at its RT and checks whether there is a match for the obtained keys. As we
consider a not configured FIXP, it forwards this packet to the CP (2).

After this, FSPH forwards the received data to its proper controller (3).
At CL, the controller receives the packet and proceeds according to its spe-
cific strategies. In this example, the controller discovers how to achieve the
packet’s destination and generate the Table Add-Modify primitive (4).
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Figure 2.7: Example of a hypothetical architecture communicating through FIXP.

After that, AL’s FCPH forwards the control packet to the desired switch
(5). Upon receiving the packet, FRHS translates the Table Add-Modify prim-
itive into the BMv2 pattern and sets the desired architecture’s RT. Then,
FRHS retrieves the operation status from the Thrift Server to create the
Ack packet, sending it to the specific controller (6). The controller receives
this Ack (7) and it can later reinsert a packet into the network for a success
status (8) or resend the primitive again for a failure.

The FCPH receives the reinsertion packet (8), retrieves the original con-
tent, and the FIXP switch destination from this primitive. Through this
data, FCPH forwards the original packet to the specific switch (9), where
FIXP.P4 receives as the original packet. As it has already the rule for rout-
ing, the packet is forwarded to the appropriate Egress Port (EP) interface
(10). From this moment on, any packet aiming the same destination will be
forwarded to the next hop without involving AL and CP.

2.3.7 Closing Remarks

FIXP is a Brazilian SDN project that promotes a multi-architecture In-
ternet network. At this moment, it acts as an interconnection point for 3
disparate architectures, being these the NG, ETArch, and TCP/IP. As it has
been proposed, any novel communication architecture can join this scope
with ease. This fact is first because P4 is an architecture flexible enough
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to accommodate and model essentially any standard. Secondly, the NG
version of the FIXP protocol applies the JavaScript Object Notation (JSON)
standard, which is a solid and well-known lightweight data format that most
of the programming languages and devices can exploit.

2.4 NovaGenesis

Throughout this sub-chapter, NG is presented in-depth, delimiting its
main components, services, and philosophy. Given the aim of the developed
work, this sub-chapter also focuses on the NG communicating protocol, cov-
ering topics of NG messages, fragmentation, and actions. Therefore, this
chapter expected takeaways concern more with preparing the reader to un-
derstand the future discussions, mainly with the collaboration between NG
and the P4-based hardware requirements, solutions, and challenges.

Therefore, the crucial question to be addressed by this chapter relates
to something even more important than the NG concepts, more than its
ingredients, more than every technology that can be encompassed into its
scope. The question is quite simple, yet complex: how NG is relevant to our
society? How can it be generic enough to accommodate new technologies
as they arise?

2.4.1 Project Design

The NG project bases on a 2010 study about Future Internet [44]. This
article outlines the importance of a “clean slate” architecture and the tech-
nological requirements, challenges, and trends that a new infrastructure
must have to accommodate the applications of a foreseen future. Moreover,
it addresses the inefficiencies of the current Internet model, which has a
level of heterogeneity and inconsistency that has increased as new solutions
have been proposed and incorporated into its design [45]. Thus, this refer-
ence was one of the main inspirations to establish the best requirements,
components, and ingredients that would compose the FIA called NG.

Briefly, NG focuses on integrating processing, storage, data exchange,
visualization, virtualization, and several other elements and applications,
seeking to be flexible enough to accommodate another future emerging
concepts [46]. In other words, one of its cornerstones is to be generic
enough to provide a communication infrastructure that meets not only the
present applications, but also new future trends that arise from society’s
demands [47]. In this way, it can keep relevant and avoid being obsolete.
Another pillar is its self-organizing structure. This concept enables the ar-
chitecture to dynamically allocate individual resources to supply the execu-
tion and needs of a given application [45].

Concerning some current trends, NG covers aspects of Information Cen-
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tric Network (ICN), Self-Verifying Name (SVN), SDN, Service-Oriented Ar-
chitecture (SOA), Service-Centric Network (SCN), Network Function Virtu-
alization (NFV), IoT, Self-Organizing Network (SON), distributed name res-
olution, Identifier/Locator (ID/Loc) splitting [48]... We truly believe that we
can keep adding new topics to this list and it might be probably unlimited.
This is because technology is an infinite game of perpetual development
that improves itself as new challenges arise. These disjointed ingredients
are cohesively added into NG core. Anything that boosts and does not go
against NG project scope can be adapted into this idea. Briefly, five design
pillars were chosen to drive this work. These are explained bellow [49].
Nonetheless, there are about 15 design ingredients and pillars for NG.

Entities

First of all, we must clearly define the entity nomenclature. In the NG
architecture scope, entity designates both physical and virtual existences
that have the function of dealing with information or data in general [45].

For example, let us consider the Hubble Space Observatory that observes
our Solar System in outer space. This infrastructure acquires infrared, visi-
ble, and ultraviolet light based on its optical system called Optical Telescope
Assembly [50]. Moreover, other systems monitor outer space objects and
their traits, such as stars, quasars, celestial object’s temperature, chemi-
cal composition, density, and motion [51]. Besides the image instruments,
Hubble’s presents an efficient spacecraft system able to harvest the solar
energy and produce electricity, thermally protect the telescope, control the
equipment and transmit data [51]. Several digital processes are happening
inside each system, e.g. data processing, exchanging, or storing.

Based on this example, a NG Hubble system can address each real or
virtual entity by its nature. For instance, there would be NG entities that
represent each embedded system that controls the instruments, data acqui-
sition, or pointing system, as well as NG entities that exchange the visual
and other crucial spacecraft data between NG agents. Right after this, we
explore how NG address each entity and its naming structure.

Naming and Naming Resolution

In NG, each entity has a specific perpetual name that identifies it within
any scope. In its turn, each entity can produce a particular service and/or
generate content, which is a set of data. This data can be the result of any
input processing information, data exchange, or content storage [45]. Each
data or content can also be named within a NG scope.

As expected, any entity must be named in the domains of NG (scopes)
to distinguish each existence. For this, there is the flexibility to use both
Natural Language Naming (NLN) and SVN [45]. The first concerns ap-
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pointments that reflect semantically meaningful assignments for human be-
ings. To exemplify this, Hubble can represent the cosmic environment by
the proper current human astronomical convention to name a space ob-
ject detected by its lenses. If Hubble monitors the Solar System’s celestial
bodies, there could be digital entities that represent the planets with their
individual well-known names (Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Uranus, and Neptune) or the whole group of Solar System’s Planets. Con-
trary to the current Internet, that recognizes names of a few set of entities,
NG provides an unlimited (in terms of namespaces) support for naming.

On the other hand, SVN increases network security. These logical names
result from hash functions that process an input and convert them into a
defined pattern [45] – a name. Such functions accept a random amount
of variable-sized input and standardize them on fixed-length output as if it
were data encryption. When performing such a procedure, a name that
could express something semantically rich like “Saturn” becomes some-
thing equivalent in a given binary pattern, such as “233ea1805dab5120a0-
ecc49b71a48063” in the MD5 hash function. Therefore, SVNes guarantee
the anonymity of an entity to external eyes once an application can use a
wide range of hash techniques to generate a SVN. Moreover, SVNes avoids
data duplication, based on the fact that a given input has a single output in
the employed standard generally. Besides, authentication of SVNes ensures
the data integrity [49]. When applied to services and operating systems,
SVNes allow to determine whether such software are still intact.

Therefore, NG naming concerns nothing more than the attribution of
symbols to one or more entities, carrying a sense of individual identity to
each. This naming is mostly unlimited, accepting NLN or SVNes.

Identifiers, Locators, Name-Bindings, and Name Resolution

In NG, a name by itself is not an identifier. For instance, it can be really
confusing to identify a person if we only consider his/her first name in a
given geographical area. This naming ambiguity is because there must be
several people with the same first name. How many people with the first
name as “Thiago,” “João,” or “Maria” can be found in a single city like Santa
Rita do Sapucaí? If we expand or decrease the analyzed geographical scope,
the number of occurrences will also change. This yields ambiguity to ensure
the proper identification of an entity in the given area. Therefore, a name is
only an identifier if it is unique in a given scope/domain that unambiguously
determine an entity in NG’s scope.

Regarding the location in the context of NG, it occurs through another
name called “locator.” This name binds to an entity to reflect its current
location. Such name-bindings give a sense of the relationship between two
or more distinct named entities. Tuples delimit these name-bindings in the
form of in the format “<key, value (s)>” in NG [44].
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Through name bindings, NG detaches identifiers from locators. This is
called ID/Loc splitting, fostering the entities’ mobility in several scopes
without losing track of their identities. In this way, NG ensures entities’
traceability and full accountability in the network by their name’s immutabil-
ity. For example, the tuple <Thiago, Melbourne, Australia> represents the
location of the entity “Thiago” in the scope “Melbourne” in “Australia.” In
case of displacement, this tuple modifies to reflect the new position like
<Thiago, Sydney, Australia>, without losing the entities identity.

NG Smart Objects, Gateways, and Controllers

NG encourages a distributed environment where each entity can request
and/or accomplish an action. In this way, a rich communication network
is dynamically orchestrated, based on entities’ agents that foster this ren-
dezvous among seekers and providers.

Each NG entity presents a Proxy/Gateway Controller Service (PGCS) for
dynamic resource composition [46], representing a NG domain, a single
service, or a single entity, connecting this existence to the NG infrastruc-
ture. This service is also a network gateway that manages the different
communication between distinct technologies, translating NG messages to
any modeled link layer technology. At last, it also is a controller for manag-
ing programmable physical or virtual resources [52].

Servitization, Life-Cycles and Contract-based Orchestration

Following the SOA premises, NG considers “everything-as-a-service” to
dynamically compose its functionalities [48]. Any entity is capable of per-
forming a task must offer this ability to the network. In its turn, whichever
entity that requires something to fulfill an action must request it from the
network. Through this concept, the rendezvous between service offers and
requests fosters the dynamical network composition by each entity proxy.
Meanwhile, the concept of service is nothing less than a virtual entity fo-
cused on processing, exchanging, or storing information [46].

Taking Hubble’s environment as an example, a NG entity that oversees
the Milky Way’s collects data that may require temporary data storage. This
data acquisition can request this storage from a NG data center onboard
and establish a storage service. After a while, a NG entity that represents
this Hubble’s data recorders can now contact a NG service that manages
the communication antennas and satellites to transmit the gathered data
to NASA. After exposing this need and setting up this service, the storage
agent can exploit the transmission channels. On the other hand, a NG agent
located in NASA can request an adjustment on the Hubble’s pointing system
by a specific NG agent that controls this system.

Through this resource discovery, NG fosters a context-based orchestra-
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tion of services and applications based on the name bindings [46]. Each
entity’s PGCS manage this communication, dealing with service proposals
and establishing contracts to perform a task. This yields in another NG
concept called Service Level Agreement (SLA), which represents the con-
tract between two entities. In this negotiation, the peers define the overall
service QoS, as well as services’ boundaries, i.e. what each service is al-
lowed to operate, their responsibilities, liabilities, penalties, and any other
clause [52]. As the network expands, micro-services builds the network
stack dynamically [46], since many protocol implementations today are vir-
tual network functions. NG has envisioned this trend first.

After establishing the SLA, the peers carry out the service. During this
stage, the peers consider the terms of quality and possible penalties due to
faulty operation. In some applications, it is even feasible to develop mecha-
nisms that handle this feedback and adjust the performance to improve the
overall quality of service. Through this concept, NG achieves an operation
with minimum humane interference, as the players can act autonomously
based on the preceding SLA and possible adjustment controls [46].

When established service finishes, the peers dismiss their SLA and re-
voke their credentials to access each other domains. This service’s dis-
missal stage only happens when the task is concluded or, perhaps, when
the QoS is so meager that the peer has to shut down the operation. After
this, the capabilities are released and made available again to the network,
restarting the life cycle anew.

As examples, NG see event protocol implementations in software as ser-
vices and, deriving from this, any service, protocol, or application are seen
as services and must attend to this life cycle. Through this, NG foster hard-
ware programmability, control plane dynamical management, and any vir-
tual function into its scope [48].

2.4.2 NovaGenesis Main Services and Processes

This section focuses on the main NG services. In parallel, it aims at high-
lighting the relationship of each service’s role and the NG cornerstones.

Proxy/Gateway Controller Service

The PGCS is one of the primary NG core services, encompassing the
functions of proxy, gateway, and controller. This service is the access point
between the NG inter-communication, wherein it adapts NG raw messages
into modern or legacy link layer technologies and vice versa. In other
words, one of PGCS main functions is related in translating the NG pro-
tocol into established technologies, such as Ethernet, Wi-Fi, ZigBee, and so
on [48]. In this premise, PGCS deals with encapsulation, fragmentation and
re-assemblage of raw NG messages into the desired protocol parameters.
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As a proxy, PGCS represents ordinary things at software layer [48]. This
fosters a smart service’s ecosystem, where distinct and disjointed peers
exposes their available capabilities. Through this exposure, NG stack is dy-
namically composed. Moreover, PGCS fosters the programmability of con-
nected devices, such as sensors, atuators, switches or any other physical or
virtual programmable thing. Besides, it can also manage general configu-
rations of represented devices on the fly [48].

Based on the ID-oriented naming structure and routing, PGCS forwards
NG messages over the link layer. Therefore, PGCS relies on the message’s
destination SVN to decide whether a message is intra- or inter-domain com-
munication. In both cases, PGCS can be seen as a software routing service
that manages the exchange data traffic inside a NG domain [47]. At last,
PGCS provides bootstrapping functionalities to enable other service’s dis-
covery within the same domain and fully initialize a domain.

Gateway

The Gateway is a internal component (block) from a NG service. This
component interacts directly with the operating system Shared Memory
(SHM), boosting inter service communication in an OS. This means that any
message or data exchange between NG services within a same OS happens
through the SHM, wherein the Gateway (GW) puts the NG message into
the SHM’s and the destination GW takes the required message out of the
SHM. Moreover, the GW fosters the inter component communication inside
a service, adopting event-driven dispatching of messages and callback of
service actions [48]. NG is also an event driven emulator/simulator that can
be adopted to evaluate network performance similarly to NS3 or OPNET.

Hash Table

The Hash Table (HT) internal component (block) stores any kind of name
binding. For example, it can register the peer’s SVNes of each individual
block. Therefore, it collaborates with the GW process at forwarding mes-
sage, wherein HT has the other services and processes SVNes.

Name Resolution and Networking Cache System

The Name Resolution and Networking Cache System (NRNCS) encom-
passes other three NG services [48]: Publish/Subscribe Service (PSS), Generic
Indirection Resolution System (GIRS), and Hash Table Service (HTS). The
role of NRNCS is to store SVNs, provide networking cache of content, and
improve the data exchange, fostering the decentralization of content.

The PSS is a distributed API for service discovery and access based on
the naming structure. This service performs the following tasks [48]:
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• NB and content publishing without notification of other services;

• NB and content publishing based on the request of interested services;

• NB and content subscription;

• NB and content subscription based on the request of a publisher;

• NB and content delivering to subscribed peers;

• Revokes published NB and content, if any.

The second service of NRNCS is GIRS. This service receives pub/sub
messages from PSS and forwards them to the best hash table instance.

The third, and last, service of NRNCS is HTS. This service is respon-
sible to store Name-Binding (NB)s and associated contents. Through the
NG premises, NRNCS is capable of creating a data structure to build dis-
tributed hash tables based on the acquired SVNs. As a result, NBs and
related contents are stored in a distributed way.

2.4.3 NovaGenesis Protocol and Layered Model

Now that a glimpse of the main NG concepts has been shown, we are
going to focus on the protocol specifics. Firstly, this sub-section presents
the NG Layer Model, organizing each main NG service in a coherent man-
ner. After establishing this concept, it depicts how each player interacts
within a given domain, focusing on the NG inter-communication. Follow-
ing, it discusses the NG protocol in broad, exposing the main NG messages
and actions. Finally, it outlines the cases where fragmentation occurs and
how the NG fragmented messages are structured. This section is crucial to
understand the NovaGenesis Control Agent for Future Internet eXchange
Point.

NG Layering

NG is a convergent data architecture that aims at processing, storing,
and exchanging data. This project takes advantage of several legacy Link
Layer technologies to connect its hosts, such as IEEE 802.3, LoRa, or Blue-
tooth. In other words, NG does not establish a specific NG protocol to be
sent over the Physical Layer yet. Every Link Layer technology must be pri-
ory modeled into the NG stack to exploit its characteristics. In broad, there
is no difference in these technologies control headers whenever someone
applies NG. Figure 2.8 depicts the NG generic communication layer model,
considering the Link Layer, Raw Socket, Convergence Layer, NovaGenesis
Layer, and the NovaGenesis Application Layer.

A specific Raw Socket retrieves the data at the Physical Layer and deliv-
ers it to the Convergence Layer. Meanwhile, raw sockets receive packets
directly from the Link Layer [53]. These sockets sidestep any data process-
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ing and deliver the raw data directly to the application on the upper layers.

Figure 2.8: NG layered
communication model.

Interacting directly with this socket, the PGCS
is the only NG service that performs inter-domain
communication. This service receives the raw data
and assigns a data buffer to store the received
packet at the NovaGenesis Layer.

The NG Layer inserts control headers to iden-
tify each unique NG message. These extra head-
ers enables the fragmentation and reassembling of
NG messages. Moreover, this layer provides the
intra-processes communication. At the NG Appli-
cation Layer, novel NG applications execute their
functions based on the NG messages.

Intra-Domain Communication

Figure 2.9 depicts a hypothetical NG host inter-
nal structure. Notice that every data exchange be-
tween NG processes takes advantage of each GW
and the SHM. Upon verifying an existing process
in its service’s scope, the GW enables the data for-
warding to the specific process at the same OS. At
last, every host must present a PGCS to receive or
forward data to/from its domain. In this way, NG
has a fractal structure in terms of its main pro-
cesses. In other words, there is a self-similar in-
ternal organization that can be replied to several
distinct applications. For instance, every NG ser-
vice must deploy the GW and HT core blocks to
communicate inside or outside an OS.

On the other hand, inter-communication data is
produced on an high-level specialized NG service
and goes through inter-processes inside a host to
adapt a sequence of NG messages and send them

to another host domain, based on the desired Link Layer technology. In this
communication, every outbound-destined data interacts directly with the
NG PGCS. As explained, this block interfaces with inter- and intra- domain
communications, adapting the received NG messages to a given legacy net-
work protocol or translating received packets into NG pattern. In specific,
PGCS has a core block called Proxy/Gateway (PG) that interacts directly
with the Raw Sockets. These sockets must be specific for each distinct
communication protocol. Through these, PGCS receives or forwards data
from/to a desired communicating peer.
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Figure 2.9: Depiction of the NG structure based on a layered model with its novel
components and its main processes.

NovaGenesis Messages and Actions

NG exploits NG Messages to exchange data through NG peers. This
message conveys actions that are based on NG Command Lines, specifying
the operations to be performed [46]. On the other hand, these command
lines might present payloads that act as the parameters of a given action
[48]. For instance, the NG Message can be seen as the behavior pattern that
a NG peer generate, which conveys the desired functions to be performed
by a NG process, service, or host at destination. Each function is a specific
NG Command Line that may present a given payload, i.e. a set of input data
or parameters to generate an aimed output through that action. The ASCII
format encodes the whole NG Message, splitting each NG Command Line
through the “End of Line” character, i.e. the ASCII ‘\n’ or 0x0A [48]. The
following box depicts the generic form of a NG Command Line:
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ng −command −−alternative version [ < n type E1 E2 E3 E4 ... En >
] ‘\n’

, where:

• ng: two characters that mark the start of a NG Command Line.

• −command: Points to which action must be performed at the desti-
nation through this command line.

• −−alternative: Selects one option for a command, customizing this
action.

• version: Highlights the actual version of a command and alternative.

• [...]: Delimits the vectorial arguments that the action needs to con-
sider at the destination.

• <...>: Delimits the arguments for a given action.

• n: Indicates the number of elements in an argument.

• type: Expresses the type of elements in an argument.

• n type E1 E2 E3 E4 ... En: Represents the elements of an argument.

• ‘\n’: The End of Line character symbolizes the end of a command line.

Examples of NG Actions

This subchapter focuses on explaining the NG main actions for routing
data and exposing resources.

• Forwarding/Routing Line:

Usually, this is the first command line of every NG message, once ev-
ery data content has a inter- or intra-domain communication goal. In
this way, the NG architecture establishes this pattern for a routing/for-
warding primitive that generally presents three arguments, with two
tuples to identify the source and destination [46].

ng −m −−cl 0.1 [ < Domain Arguments > < Source IDs> <
Destination ID ] ‘\n’

, where:

– −m: The ‘−m’

– −−cl: The ‘−−cl’

– 0.1: The action version of the Forwarding/Routing Line.

– Domain Arguments: This parameter delimits the communica-
tion domain, in which the data exchange happens.

– Source IDs: Represents the Source’s SVNes values.
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– Destination IDs: Represents the Destination’s SVNes values.

There are four SVNes values that represent host traits when consid-
ering intra-domain applications. The first value represents the Host
Identifier (HID), a value that identifies the source or destination host
for a NG message. The second points to the Operational System Iden-
tifier (OSID), an identifier for the OS. The third aims at the Process
Identifier (PID), a process that generates or consumes the NG mes-
sage. Lastly, the Block Identifier (BID) is an SVN that specifies which
NG internal component must receive or have generated a message.
These four identifiers are crucial to establish any NG inter-host com-
munication. Once a given NG peer can present several NG internal
components, running in several distinct OSs, and performing distinct
NG processes in the same HID hardware resource. Through these, NG
can currently route any NG message based on this tuple of SVNs by
software. To exemplify, consider this real example of a intra-domain
communication for this line is represented bellow:

ng −m −−cl 0.1 [ 1 s 28FD4420 > < 4 s 0BD95286 ED12F3ED
7E764DC1 4D623F20 > < 4 s 0BD95286 ED12F3ED

342DD4C5 B8101939 > ] ‘\n’

, where:

– ng −m −−cl : Represents the forwarding/routing command line.

– < 1 s 28FD4420 >: Limits the NG communication scope.

– < 4 s 0BD95286 ED12F3ED 7E764DC1 4D623F20 >: Presents
a tuple that identifies the source’s HID, the OSID, PID, and BID.

– < 4 s 0BD95286 ED12F3ED 449B0B0C 6FDF0A76 > : Iden-
tifies the tuple of the destination’s HID, the OSID, PID, and BID.

In other words, this means that a NG message forwarding/routing
must happen within a local domain 28FD4420, wherein the NG block
6FDF0A76 from the 7E764DC1 process in the ED12F3ED OS of the
0BD95286 host sends a message to the NG block 4D623F20 from the
449B0B0C process in the ED12F3ED OS of the 0BD95286 host.

Considering NG broadcast messages, the Destination IDs are filled
with the “FFFFFFFF” value. This scheme indicates that the destina-
tion is every NG peer in the network.

• Hello Line

Hello Command Lines exposes periodically the traits of a given en-
tity [49]. This enables the NG Initialization procedure, wherein inter-
nal components exchanges their SVNs, for example the HID, OSID,
and PID. This primitive reveals the SVNs related to the PGCS’s inter-
nal GW, HT, and Core components [46]. Moreover, it also draws the
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details of the link layer technology applied to the communication, the
network interface at the OS, and the MAC address from the PGCS’s
host [46]. In addition, it also displays four SVNs from the PSS, allow-
ing the destination to publish and subscribe data to the exposing peer.
In general, the Hello Command Line presents the following structure:

ng −hello −−xxx 0.y [ < 6 s PGCS SVNs Host SVNs > < 4 s PSS
SVNs > ] ‘\n’

, where:

– −hello: Specifies the NG Hello command.

– −−xxx: Expresses the type of communication: “–ipc” designates
a intra-host hello and “–ihc” for inter-host communication, expos-
ing traits through PGCS to another NG host.

– 0.x: Determines the version of the Hello Command Line which
can be 0.1 or 0.2.

– < 6 s PGCS SVNs Host SVNs >: This parameter delimits six
string values of SVNs that exposes the name bindings related to
the internal PGCS’s components and the PGCS’s host.

– 4 s PSS SVNs: This vector draws out four string SVNs values
from the host PSS. This enables the destination to subscribe and
publish data and name bindings directly to the exposing peer.

The following box presents a real example of a exchanged “Hello”
Command Line:

ng -hello –ihc 0.2 [ < 6 s A4324A2D AB9B70B4 57ECEB4F
Wi-Fi wlan0 ac:22:0b:c9:df:3b > < 4 s 0BD95286 ED12F3ED

8E8B52EC 7EA46815 > ] ‘\n’

This primitive is the second version of Hello for inter-host communi-
cation. In this line, a peer is exposing its PGCS internal components
SVNs in the argument vector: A4324A2D (GW), AB9B70B4 (HT), and
57ECEB4F (Core). Moreover, this same vector details that the host
uses the Wi-Fi link layer technology, through its “wlan0” network in-
terface with the “ac:22:0b:c9:df:3b” MAC address. Following this, the
third argument points out four SVNs related to its PSS.

2.4.4 NovaGenesis Message Fragmentation

In order to achieve the convergence between NG and any legacy Link
Layer technology, NG applies its three layers to handle the message pro-
cessing since conceiving a NG message until its translation into any com-
munication protocol. Figure 2.10 presents an example of the creation, adap-
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tation, and shaping of a NG message into an Ethernet stack example.

Figure 2.10: Example of a full NG message.

At the NovaGenesis Application Layer, NG conceives its messages
to enable the data exchange. These messages act as the NG language
standard that conveys the ontology between NG instances, processes, and
peers. Each line is a NG command line that represents an NG action.

The NovaGenesis Layer receives the NG messages and adapts them to
comply with the given legacy Link Layer technology parameters. This im-
plies that it can fragment NG messages into smaller frames. Figure 2.11
exemplifies a hypothetical NG message fragmentation. Moreover, NovaGe-
nesis Layer is crucial to enable the fragmentation and reassembling. This
layer inserts a control header with the following fields:

• Message Identifier is a randomly generated number of 4 bytes. This
field identifies each generated NG message and acts as an index to
reassemble fragments. Consequently, every Message Identifier field
of every fragment of a fragmented message presents the same value.

• Fragment Sequence is a 4 bytes values that convey the sequence
of fragments generated. This value is incremented by a unit as frag-
ments increases, starting from the 0 value. Through this field, the end
peer can reassembly any NG fragmented message, even in cases of
receiving random fragments in an unordered manner.
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3 Ethernet
Packets

NovaGenesis 
Layer 

NG Message
n bytes

ng -m --cl 0.1 [ < 1 s 28FD4420 > < 4 s 0BD95286 ED12F3ED 7E764DC1
4D623F20 > < 4 s empty empty empty empty > ] 

ng -hello --ihc 0.2 [ < 6 s A4324A2D AB9B70B4 57ECEB4F Wi-Fi wlan0
ac:22:0b:c9:df:3b > < 4 s 0BD95286 ED12F3ED 8E8B52EC 7EA46815 > ] 

ng -scn --seq 0.1 [ < 1 s 1A81A5E3 > ]

ng -m --cl 0.1 [ < 1 s 28FD4420 > < 4 s 0BD95286 ED12F3ED 7E764DC1
4D623F20 > < 4 s empty empty empty empty > ] 

ng -hello --ihc 0.2 [ < 6 s A4324A2D AB9B70B4 57ECEB4F Wi-Fi
wlan0 ac:22:0b:c9:df:3b > < 4 s 0BD95286

ED12F3ED 8E8B52EC 7EA46815 > ] 

ng -scn --seq 0.1 [ < 1 s 1A81A5E3 > ] 
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Figure 2.11: Example of a fragmented NG message.

• Message Size is an 8 bytes value that represents the full length of the
original NG message. Each NG frame can present a variable size. This
field is crucial to remount fragmented packets in the communication
end, once it points the expected full size of the NG message.

In order to exemplify the fragmentation and reassembling of NG mes-
sages, Figure 2.12 illustrates the process of data exchange between Host
A and Host B with an unordered receiving packet process. Notice that
Host A’s generates a “Hello” message to expose its traits to the Host B. To
conform this message, NG Layer fragments the 273 bytes into 3 frames.
At this moment, it inserts the control header for re-assembling at Host B.
The Message ID is the hexadecimal value of 0x9C4, the Fragment Se-
quence is incremented as new frames are being conceived, and Message
Size depicts the full length of 273 bytes or 0x111. After this, the Conver-
gence Layer parses each NG frame into the desired communicating protocol
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stack. In this example, we are considering an Ethernet stack. Therefore,
this last layer inserts the required header fields of Ethernet, such as the
MAC addresses and Ethertype, to conform each NG frame to this standard.

For some unknown reason, consider that the 3 Ethernet packets sent
by Host A are received unordered by Host B. In this hypothetical example,
Host B receives fragment 3, fragment 1, and fragment 2, respectively. As
Host B receives each fragment in distinct moments, NG Convergence Layer
first parses each Ethernet packet. At this primary Layer, NG considers the
Ethernet stack standard to take NG fragments from its payload up.

After translating the received packet into frames, the resulted frame are
processed by the NG Layer based on its control headers. Through the Mes-
sage ID, Fragment Sequence, and Message Size, NG remounts the frag-
ments into the full NG message. This layer assigns a buffer with the Mes-
sage Size to mount the full NG message based on the Message ID header
field. This buffer is filled with each received packet’s payload, ordering
them by the Fragment Sequence field. After mounting the full NG message,
NG Layer processes the “hello" message.

2.4.5 Closing Remarks

NovaGenesis is a convergent information architecture focused on a multi-
strategy approach. As seen, we can relate its concepts with other proposals
like ICN, SCN, SOA, digital twins, and others. This is an architecture that
supports protocol implementation as services, mobility, unlimited names-
paces, contract-based operation, semantic rich self-organization, and so on.

Through its self-similar and self-organizing structure, basic and special-
ized services composes mostly any NG application and its protocol can be
converted into any legacy technology. Each entity can present an identifier
if it has a unique name in a given domain, which can be represented in NLN
or SVN convention. Each entity has a well-defined life cycle to act within
a NG domain, covering from NG Bootstrapping until its regular operation.
This characteristic yields in two distinctive NG operation phases: initializa-
tion and operation. During the initialization, NG hosts create its domain
with the desired traits and expose its SVNes to other NG peers, offering a
service. Whenever a resource is found in the network, the NG players can
establish SLAs to negotiate the terms of a cooperation.

Finally, the operation phase starts once the hosts have established a SLA.
After they fulfill the agreed task, NG follows to disclosure and forbid their
cooperation once their partnership is completed. In latter states, the own
service’s dismissal is considered in the NG Life Cycle.
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Chapter 3

Related Work

THE Internet is a landmark of science. This infrastructure has shortened
distances and fostered new models of society. Nonetheless, contempo-

rary trends stress the current Internet core, hindering its full potential. On
other hand, revolutionary proposals remodels the Internet from scratch,
using clean-slate architectures to address the current Internet challenges.

In this aspect, this chapter first approaches a research methodology to
carry out a literature review, highlighting the search strategy and the ar-
ticles’ selection. Based on this, synergistic FIA works that have explored
SDN are explored to contrast with NG architecture. Finally, the final con-
siderations are presented, summarizing this chapter, and presenting the
current convergence of FIAs and SDN state of the art.

3.1 Research Methodology

This chapter focuses on analyzing FIA proposals that explore SDN. In
this way, it bases on a systematic literature review that follows the given
procedure:

• Research Questions: Questions that guide the research and selection
of articles to compose this chapter;

• Search Strategy: It presents the adopted strategy and the data collec-
tion sources;

• Article Selection: Displays the criteria used to select the articles;

• Quality Assessment : It highlights a filter performed to determine the
general quality of the selected related works.

3.1.1 Research Questions

The FIA field presents several projects to remodel the Internet under
clean-slate proposals. Given this collection, many of these projects were

49



50 3.1. Research Methodology Chapter 3

supported by funds earmarked by private and governmental research funds.
For example, we can mention programs promoted by the North American
National Science Foundation (NSF) and by the European Union. Of the
latter, the Framework Program 7, Horizon 2020, and Horizon Europe stand
out. Nonetheless, several of these proposals have been abandoned when
the research funding is concluded and, thus, the financial resources or any
other reason to study them have became scarce.

Given the impact of this research area, research questions filter the re-
search range, narrowing it to the FIA works that have covered SDN. There-
fore, two types of research questions are presented: the General Research
Questions (GRQ) and the Specific Research Questions (SRQ).

Contemplating this methodology, Table 3.1 outlines the research ques-
tions. Firstly, GRQs aim to narrow FIA projects. Firstly, GRQ1 selects the
FIA that are harmonious with the NovaGenesis architecture and have ex-
plored SDN. After this, GRQ2 focuses on GRQ1’s architecture structural
principles relevant to SDN. On the other hand, SRQs further restrict the
scope of research by proposing a systematic literature review of architec-
tures that explore or have explored SDN technology. SRQ1 analyzes the
convergence of FIA and SDN, highlighting each related work and discussing
its methodology to fulfill its goal. Finally, SRQ2 characterizes, if possible,
each proposal’s control agent assumptions.

Table 3.1: Research Questions.

Group and Identifier Issue
General Research Questions

GRQ1
Given the area of FIA, what are the most synergistic proposals to the
NovaGenesis architecture and have explored SDN?

GRQ2
Through the GRQ1 filter, what are the operating principles of these
architectures?

Specific Research Questions

SRQ1
Based on the FIAs collection given by GRQs, how SDN is applied in
their design? What are the tools, technologies, and methodology used
in these related works?

SRQ2
If possible, what are the main control agents’ assumptions to oversee
an SDN network infrastructure?

SRQ3
Based on the related work, what are the main takeaways and research
opportunities for FIA and SDN convergence?

3.1.2 Search Strategy

Keywords were associated with scientific databases to perform this re-
search. Therefore, the present study bases on terms such as: FIA, SDN, P4,
OpenFlow, and other related keywords. These words were logically com-
bined to compose this data collection. Concerning the data sources, the
IEEE Xplore from Institute of Electrical and Electronics Engineers (IEEE),
ScienceDirect from Elsevier and ACM Digital Library from Association for
Computing Machinery (ACM) digital repositories were consulted. In these
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websites, the keywords combination narrows the search and enables select-
ing the most relevant works associated with this work.

3.1.3 Article Selection

Through this methodology, relevant articles were found in the desired
area. Moreover, only the works with more than 4 pages were considered
for this study, ranging from periodicals, conferences, and workshops.

3.1.4 Quality Assessment

The quality standard covers a superficial analysis of the selected articles.
At this point, the abstract, introduction, and conclusion sections were con-
sidered to determine the relevance of each proposal. If there was potential,
the rest of the article was contemplated to provide material for this chapter.

Before going into the literature review, someone can note that not every
covered proposal presents the tools used, lacking the data to understand
what its authors employ. In other words, some do not specify the technolo-
gies, architectures, or even the programming language. In the same way,
some do not have the future works section. Hence, it is not known whether
a project continued or not. Some attempts to search for new articles by the
authors’ names were made, yet it has not presented satisfactory results.

Even so, the explained filter made it possible to find 4 FIA harmonious
to NovaGenesis. Through this search, 3 projects are relevant to the current
scientific community and present continuous work in different areas and
technological trends. As for the proposals that explore the convergence
of Internet and SDN architectures, the search has found 8 works. From
this total, 5 seek to optimize the communication infrastructure using SDN
technology, while 3 seek the interoperation of architectures.

3.2 GRQ1 and GRQ2: FIAs and their Principles

This sub-chapter presents the alternative Future Internet Architectures
to NovaGenesis, answering the GRQ1. Moreover, it presents each proposal
principles that relates the most with NG, addressing GRQ2.

3.2.1 Named Data Network

Disrupting from the host-centric paradigm, Named Data Network (NDN)
proposes that data must drive any communication. In this view, this FIA is
an example of ICN, wherein named data is the cornerstone of a data-centric
design [54]. In its design, NDN packets address content objects rather
than communication endpoints. In other words, every communicating entity
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identifies the desired content and does not a server’s address, like in IP [55].
Moreover, NDN’s naming structure encompasses everything in its global
hierarchical scope, from raw contents to endpoints. To cite some of its
benefits, NDN improves security, confidentiality, traceability, and anonymity
through named data signatures. This architecture also dynamically self-
regulates the network traffic by its stateful communication scheme [54–56].
Besides that, NDN might be the most important contemporary example of
an ICN, being founded by the U.S. National Science Foundation under its
Future Internet Architecture Program [54].

Focusing on its communication scheme, NDN applications drive the data-
pulling from the network [56, 57]. Moreover, it enables effortlessly in-
networking cache and multicast data delivery, once NDN routers apply
stateful tables to forward packets throughout the network to meet requests
[56–58]. Therefore, the architecture reacts wisely to sudden network prob-
lems by applying a forwarding strategy in a hop-by-hop manner. In this
way, it can avoid network congestion and link failures while optimizing the
overall QoS related to round-trip time, throughput, and packet loss.

Concerning NDN forwarding structure, it bases on only two types of
packets: Interest and Data [57]. Whenever a receiver (originally, an appli-
cation) wants content, it issues an Interest to the network. In this datagram,
the only required field is the unique content’s name [54,59]. This name fol-
lows a hierarchical structure that expresses the relationship between the
data and the network elements. For example, a picture called “Inatel.jpg”
from the ICT Lab stored in a server at Inatel can present the following NDN
name structure “/inatel/ictlab/Inatel.jpg.” Based on this definition, every
forwarding element analyzes the domain boundaries to fulfill the request.

Focusing on the NDN stateful forwarding scheme, it presents 3 struc-
tural components called Content Storage (CS), Pending Interest Table (PIT),
and Forwarding Interest Base (FIB). Alongside a Forwarding Strategy, NDN
enables the adaptive routing per hop. The list below presents further de-
tails about these routing blocks, as well as the forwarding strategy:

• PIT stores all the Interests that a router has forwarded, but not satis-
fied yet [54]. This table records the requested content and the incom-
ing and outgoing interfaces that received/forwarded the Interest.

• FIB bases on an adaptive Forwarding Strategy when PIT does not
present an entry for a received Interest. This strategy can encompass
any routing or self-learning scheme that fills the FIB [58].

• CS is a temporary network cache, wherein producers store content.

• Forwarding Strategy manages the Interest packets, forwarding or
dropping them.

When an Interest reaches an NDN router, this device first checks if the
desired content name exists in the CS to fulfill or forward the request. If a
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match happens, this network node forwards a Data packet on the Interest
incoming interface, satisfying the request [54]. Otherwise, it needs to for-
ward to another network node that may fulfill the Interest request [58]. In
this case, it adds a new entry for the requested data in its PIT with a deter-
mined lifetime and demands an action from FIB. This block verifies which
is the best path to forward that Interest packet based on the Forwarding
Strategy. If the forwarding module detects that all links are congested or
any other anomaly, it probably drops the given Interest packet [54]. On
different occasions, it validates the Interest, forwarding the Interest based
on the best effort, i.e. the strategy retrieves the longest prefix known in
the FIB and decides how, when, and where to forward the received packet.
When the PIT entry lifetime expires, it removes the associated data. Figure
3.1 depicts this upstream Interest flow.

Interest

Data stored?

CS FIB

Return the requested
Data

Record the Interest,
timestamp, and
incoming and

outgoing interfaces

Data

PIT

Strategy

Drop or NACK

Forward
Interest

Figure 3.1: NDN Upstream Communication Model. Adapted from [54,58].

The Interest packet continues flowing until it reaches a server with the
required data or a router with the content cached. Upon finding this, the
server issues a Data packet that backtracks the Interest path [58]. This
reverse path is only possible due to the PIT in each NDN forwarding el-
ement that had recorded the Interest’s incoming interface. When a Data
packet reaches these elements, the device checks its PIT to determine if it
knows how to forward this packet back to its consumer. At this moment,
the forwarding element can discard the Data packet if the device does not
find any entry in its PIT [54]. Otherwise, it removes the unsatisfied Interest
entry from its FIB, stores the related data in its CS temporarily for further
requests, and forwards it to the next-hop closer to the requester. Figure 3.2
illustrates the downstream path of a Data packet to reach its consumer.

Through this communication scheme and the symmetry between Data
and Interest packets, NDN grants a stateful, intelligent, and adaptive for-
warding data plane [56]. Moreover, it can optimize the quality of data ex-
change by making contents more available in distributed caches throughout
the network while increasing its responsiveness upon supervising the PIT’s
entries lifetime and Round Trip Time (RTT) between the Interest and Data
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Figure 3.2: NDN Downstream Communication Model. Adapted from [54,58].

packets [54]. These two metrics also aid in discovering packet losses, self-
configuring the best paths if Data does not come back in the expected time.

On the other hand, the naming structure ensures networking indepen-
dence, enabling its evolvability once the names are decoupled from the
network itself [57]. This design choice contrasts with the current Inter-
net design, in which TCP/IP is strongly bound to how the packets flow. In
this way, NDN is a better fit for future applications, where heterogeneous
networks and technologies may connect different domains. Additionally, it
avoids address space exhaustion and boosts address management. Once
a name is unique globally, the NDN can explore dynamical routes to fulfill
any request and provides better support for multicast, mobility, and delay-
tolerant applications [56,58]. NDN has rethought the current Internet and
some of its published works has included research on IoT [60–62], Vehicular
Networks [63–65], and Big Data [66–68].

3.2.2 MobilityFirst

MobilityFirst (MF) is a FIA project that rethinks the current Internet
by proposing a design centered on the mobility of entities, as well as on
supporting wireless connections [69, 70]. Hence, this clean-slate ICN ar-
chitecture focuses on optimizing the security, reliability, and management
of services provided by large-scale mobile devices, applications, and net-
works [71]. This focus bases on studies that point to the predominance of
this niche in the communication networks of the future, which makes sense
considering that we see examples of technologies that encompasses IoT,
autonomous cars, and other smart ecosystems [72]. Therefore, it is reason-
able to predict that fixed devices, such as personal computers and servers,
will be a quantitative minority [69].
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MF has as pillars the concept of ID/Loc splitting to link network objects
to their domains [69]. Through this, it guarantees not only the mobility
of entities but also the scalability of the entire network, encouraging com-
munication paradigms such as multicast, anycast, multi-path, and context-
aware services [71, 73]. As a result, network objects need to have unique
and location-independent names. Thus, MF proposes public keys, or Glob-
ally Unique IDentifiers (GUIDs), of 160 bytes based on SVNs are linked to
each existence [73]. These, in turn, are mapped to sets of routable network
addresses, or Network Addresses (NAs), by Global Name Resolution Service
(GNRS) (similar to traditional DNS). If there are copies of the same content
on the network, i.e. GUIDs identical, the relationship of each replica with
its domain draws the distinction of content, i.e. NAs distinct [73]. Thus,
large-scale routing is guaranteed and effective.

As for routing, MF natively provides a separate data management plan
that provides visibility of the [69] network. Specifically, the resolution of
GUIDs into NAs enables the data routing, which is accessible to any net-
work element through the GNRS service. Therefore, the source must spec-
ify at least the destination GUID to point to a destination [73]. As a con-
sequence, the destination GUID is resolved at each router node to find the
location of a given content [73]. Each router has information about the
network graph, the quality of the links around it, and the connection proba-
bilities of adjacent nodes. As for the data itself, it can be sent via large data
blocks between nodes, which can also be stored in the network cache to
optimize transmission, content accessibility, and delay through the routing
scheme called Generalized STorage-Aware Routing (GSTAR).

As seen, MF is a clean-slate FIA centered on [69] mobility. To catalize
such a vision, it establishes robust support for wireless, security, and pri-
vacy to ensure data transmission and reliability, management, and scalabil-
ity of the network as a whole [69]. Therefore, mobile entities connect seam-
lessly through a large-scale infrastructure with fluctuations in the quality
of wireless links [69]. Thus, its purpose expands to simple smartphone-
Internet integration but also encompasses wireless peer-to-peer connec-
tions, vehicular networks, and machine-to-machine applications [70,71].

3.2.3 PURSUIT

Another proposal is Publish Subscribe Internet Technology (PURSUIT),
an ICN continuation of the Publish Subscribe Internet Routing Paradigm
(PSIRP) project funded by the European FP7 program [74]. This clean-slate
architecture shifts the focus from the send-receive to the publish/subscribe
(pub-sub) communication paradigm. In this way, this FIA conceives a novel
network core to enable this form of communication where there are publish-
ers, subscribers, and network brokers. Briefly, the following list explains
the role of each agent in pub-sub [74] communication:
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• Publishers are entities that own the data and periodically disclose
the data availability through publication messages.

• Subscribers are entities that search the network for information, re-
quest the data when they detect a publication message, and send a
subscribe message to signal interest in such content.

• Network Brokers are analogous to network routers, having the pur-
pose of forwarding pub-sub messages and the requested content along
with the network, making the meeting of the 2 players.

Through these elements, PURSUIT can natively support contemporary
types of communication such as multicast, anycast, multihoming [75]. Fur-
thermore, it also bases on ICN pillars, providing a robust, reliable, and se-
cure communication system with the possibility of replicating content over
the network through network caching and traceability of mobile entities.
As for its naming, each object has 2 IDs that specify the scope (SID) and
rendezvous (RID) of each point [76]. Meanwhile, the scope ID names a do-
main, where it groups information objects. The rendezvous ID would be
analogous to the address to obtain unique content on the network.

As for the PURSUIT routing, it relies on the SID and RID. Name resolu-
tion works as a hierarchical DHT through the Rendezvous Network, com-
posed by a set of Rendezvous Nodes (RNes) [74]. When a publisher issues a
publish message, the local RN forwards this packet through the DHT to the
desired SID. Thus, this message must specify the destination SID to where
it wants to publish its content [75]. On the other hand, subscription mes-
sages present the desired content SID and RID, which similarly enables the
routing as the publish messages [76]. There are other functions and struc-
tural mechanisms that aid the rendezvous, routing, and name resolution
function, but these are beyond the scope of this work.

3.2.4 RINA

The Recursive InterNetwork Architecture (RINA) was conceived in 2010
by computer scientist John Day [77]. This FIA proposal remodels the Inter-
net from scratch by considering that any form of interaction over a com-
puter network is based solely and exclusively on Inter-Process Communica-
tion (IPC) [78,79]. Thus, the network is responsible for making possible the
communication of applications in distributed systems, integrating different
solutions to solve intrinsic problems of the current Internet [80]. Further-
more, each application service or process has globally unique names [78].

The clean-slate RINA creates recursive layers called Distributed IPC Fa-
cilitys (DIFs) which are combined to provide functionality needed for the
network [81]. Each layer is self-contained, creating a substrate that pro-
vides resources specific to layers and higher applications [80]. For example,
the network might create one DIFs to provide data transport, one higher
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than the first to ensure security, and one higher up to manage traffic and
avoid data congestion. In this way, each level or layer DIF shares the same
protocols to perform a service but may have different policies to optimize
the regional QoS. On the other hand, each DIF also encompasses several
entities to perform a certain function [82].

Considering inter-domain communications, RINA implements distributed
applications called Inter-DIF Directorys (IDDs) that are responsible for search-
ing for entities outside the scope of a DIF [79]. At this moment, an IDD
queries IDDs of DIFs neighbors until it finds an application or meets a pre-
established condition to find the best possible path. When this happens,
the IDD can establish a connection between the source and the destination,
either through a new dedicated DIF or by expanding an existing one. In
this way, applications start to communicate directly through a service dis-
tributed between IPCs processes [80]. Thus, data routing is performed at
each hop, using the DIF created or the underlying DIFs [78]. Through this
structure, the naming and addressing become relative to the context of the
DIF, with a node identifier being considered a name for IPCs of DIFs lower
and representing an address to the same time when viewed by an IPC from
a layer above the target node [78].

Meanwhile, IDD is a distributed application or Distributed Application
Facility (DAF). In other words, a DAF is a set of two or more processes
of an application distributed in two or more processing systems in RINA.
These DAFs exchange data for their respective IPCs [79]. Furthermore,
Distributed Aplication Processs (DAPs) are used to provide point-to-point
connectivity between applications, being responsible for discovering and
making available applications throughout the network. To this end, the
DAPs has two routing tables that help in finding the IDD destination. One
of these tables is called Neighboor Table, which registers the nearest neigh-
bors, and the second is Search Table, intended to search how to reach the
destination of the application. Thus, the IDD DAPs of the same DAF ex-
change discovery messages [79]. Figure 3.3 illustrates this interaction of
the framework for routing and application discovery of the RINA architec-
ture, where app 1 makes use of IDD DAF 1 to reach app 2. Besides, note
that DIFs 1 and 2 partially connect each host.

In summary, clean-slate RINA proposes to rethink how the Internet in-
frastructure could be conceived contemporarily. By shifting the focus from
host-centrism, this architecture develops all its pillars to support IPC and
support all its applications recursively. In this way, RINA encourages the
implementation of networks with heterogeneous technologies, simply cre-
ating DIFs that promote their integration with the infrastructure. Further-
more, it fosters the mobility of entities without loss of identity by using this
ambiguous naming and addressing structure. When having a mobile entity,
it decouples from its DIF and connects through a new one, being promoted
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Figure 3.3: RINA communication model. Adapted from [79].

by the communication and routing structure of the architecture.

3.3 SRQ1: FIA and SDN convergence

This sub-chapter focuses on the related works involving FIA with SDN,
exploring proposals to enable a given FIA data exchange or interoperation.

3.3.1 ICN.P4

Focusing on the video traffic advance in the current Internet, Feng et al.
[83] aims at creating a cooperative framework between Hypertext Transfer
Protocol (HTTP) and ICN protocols. The project’s goal is to evaluate the
network performance and interoperation between the ICN and the HTTP
protocols. Through this, they can optimize the current HTTP transmission
by decoupling it from the current TCP/IP architecture. Taking advantage of
the ICN infrastructure and its benefits, the authors replace the IP protocol
with a scheme that ensures the ICN content delivery.

In this proposal, the authors created a P4-based Switches (SWs) capable
of exchanging ICN packets. Based on distinct forwarding actions, this novel
HW replicates the ICN structure, providing customized CS, FIB, and other
ICN components. Focusing on the synergy between architectures, ICN’s
Interest packets are similar to the HTTP’s request and the Data packet to
its response [58]. Alongside the P4 SW, a custom proxy agent converts the
HTTP protocol into ICN before transmitting the packets into the network.
Hence, both server and client hosts must present a proxy application before
properly transferring packets in the network. Following, the in-network
data flow takes the form of ICN custom packets for routing while ensuring



Chapter 3 3.3. SRQ1: FIA and SDN convergence 59

the inter-host communication with the traits of the HTTP protocol.

Regarding the network communicating protocol, the authors have pro-
posed a protocol with headers to aid P4 forwarding at intermediate nodes
that are not P4-based. In this way, the packet exchanged is a hybrid proto-
col that considers both the TCP/IP and ICN stack. Concerning the HW, all
of this proposal’s infrastructure exploits Virtual Machines (VMs) to validate
the proposal on Ubuntu 16.04. Through this, the authors point a better
transmission efficiency and decrease of redundant traffic in the network.

3.3.2 NDN.p4

Signorello et al. [84] created a P4 based SW capable of matching NDN
Interest and Data packets called NDN.p4 1. Upon parsing an incoming
Interest or Data packet, P4 looks up at the P4 action tables to manipulate
the simulated FIB and PIT tables, which replicates NDN forwarding scheme
as P4 registers. Nonetheless, it lacks the CS structure in the SW. The
authors deploy this SW in a infrastructure with Mininet hosts capable of
using the NDN applications called ndnpeek and ndnpoke.

NDN.p4 parser structure follows a finite-state machine algorithm that
analyzes the incoming packet. The SW considers fixed values of Type Length
Value, i.e. the payload of each NDN packet with its header and payload; a
maximum number of NDN name components to route, i.e. a name compo-
nent is a portion of the content name; and six match-action tables to act
based on the Longest-Prefix Matching situation. Based on the number of
name components, the SW selects the correct known FIB table entry. In
the case of not matching the packet full name, the Longest-Prefix Matching
happens, in which the SW forwards the Interest based on the best regis-
tered, or longest, entry and adding a new entry in the PIT with the incoming
ingress port. On the other hand, the SW matches the Data content name
with its PIT to provide the reverse route to its consumer.

Concerning its Control Plane, the authors employ a custom application
to interact with the BMv2 framework on the fly and manage the entries in
the underlying SW. As conclusions and lessons learned, the authors point
that the current P4 must consider carefully how to expand its framework,
once it abstracts the Data Plane functionalities with few native features.

3.3.3 Enhanced NDN

Differently from NDN.p4 [84], Enhanced NDN (ENDN) aims at setting
the data plane for selected NDN content delivery services [85]. This ar-
chitecture overcomes the P4 limitations of dealing with string-based con-
tent and updating the entities source code without losing the infrastructure

1https://github.com/signorello
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service. The designed architecture creates network slices by isolating P4
programs according to their functions, improving the dynamical network
programmability. This means that ENDN takes advantages of several P4
functions that run in isolation per target.

As SDN cornerstone, ENDN detaches the control plane from the data
plane. The first focuses on providing the catalog of content delivering ser-
vices, adapting the latter through setting up each network SWs to fulfill a
request. The evaluated services are: (i) Content Delivery Pattern, which de-
livers content in a namespace; (ii) Content Name Rewrite, which changes
the content name of packets at specific network locations upon an applica-
tion request; (iii) Adaptive Forwarding, which defines how routing happens
at particular network locations; (iv) Customized Monitoring, which noti-
fies the application of distinguished events; (v) In-Network Cache Control,
which manages the cached content of Data packets; and (vi) Namespace
Traffic Management, which specifies the requirements of a namespace.
Moreover, ENDN achieves complex network behaviors by the combination
of these services. The control plane sets the data plane upon receiving an
application definition of a namespace and associated set of services.

For evaluation reasons, ENDN exploits a customized NDN Forwarding
Daemon, a BMv2 model to conceive each P4 target, the P4 16 version,
and ndnSIM simulator creates two test network topologies. In the first,
a distributed data center manages the access certification of consumers.
This case enables a contrast between ENDN and NDN, in which two SWs
connects three network regions, granting connectivity among consumers
and producers. In the second, the authors investigate ENDN adaptability
through a topology that connects consumers and producers. Each network
region has a border SW, interconnected by a central network link. More-
over, ENDN handles several applications with divergent requirements that
may overload the central network link.

As a result of these evaluations, the authors draw some limitations in
terms of northbound interface, i.e. the connection between data and control
planes, scalability and resource management, consistency of settings, and
overall ENDN security. Regardless of this, ENDN seems to achieve enough
network efficiency with low latency, overcoming P4 string-based content
limitation and providing a substantial set of customizable NDN services.

3.3.4 RINA and P4

Looking ahead in the future of communication networks, RINA aims at
high-performance applications, such as 5G networks, communication ser-
vice providers, and data centers. Nonetheless, the project needs to im-
prove its infrastructure to deploy high-performance routers to accommo-
date such demand with considerable flexibility, throughput, and reduced
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latency. Therefore, a path to enable this vision is to explore SDN devices to
replace the standard RINA interior and border routers. In this way, these
devices’ programmability can customize future RINA prototypes. Gimenez
et al. [86] design the first RINA interior router based on P4.

Following this proposal, the authors developed a P4 SW using the P416
version, ready to parse the RINA’s data transfer protocol, Ethernet, VLAN,
and IPv4 protocols. Hence, RINA and IP architectures exploit the Ethernet
medium to exchange packets between two hosts and a BMv2 simple SW
target. Focusing on the P4 device, it matches actions based on specific P4
action tables and reconstructs the packets as specified in the P4 program.

On the other hand, the Control Plane employs the Stratum Network OS,
the P4Runtime framework, and a python script. The first one is a framework
capable of managing and monitoring the hardware with support to multiple
vendors. Moreover, Stratum deploys the gRPC Network Management In-
terface (gNMI) and gRPC Network Operations Interface (gNOI) that foster
the device’s programmability and streaming telemetry. Specifically, Stra-
tum is a novel tool that eases the integration between P4 and P4Runtime,
handing the required mechanisms to configure, control, and manage the P4
pipeline. In addition, the P4Runtime framework establishes primitives to
control and configure each P4 target in the Data Plane. Lastly, the Python
control interacts directly with the P4 Runtime API to open a session with
the P4 Runtime API server, loading the necessary configurations.

After designing this proposal, the authors evaluated the device through
Docker containers and Mininet network simulator. In both cases, the con-
tainers deploy Mininet, creating a network with two hosts and a BMv2/
Stratum SW to interconnect two hosts. Therefore, the SW handles the data
exchange from either EFCP or IP packets. In order to validate the proposal,
the work proposes connectivity and performance tests. The first focuses on
exchanging EFCP and IP packets between the hosts, while the latter eval-
uates the throughput and the latency. Concerning the computational re-
sources, the authors exploit a Linux VM with 2 GB of RAM and 2 CPU cores
and an Amazon WS VM with unspecified hardware settings to deploy their
environment. Through their results, the proof of concept is feasible. The
authors also point to a future work where they will explore the open source
Investigating RINA as an Alternative to TCP/IP (IRATI) RINA implementa-
tion [87], P4-Runtime API, and the Stratum Network Operating System to
design and prototype a RINA border router.

3.3.5 P4 with TCP/IP

TCP/IP has become inadequate for handling some current disruptive tech-
nologies that diverge from its model. As an example, Baktir et al. [88]
points to novel service-centric models, where smart contracts and devices
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establish services and micro-services through the network. In the current
network architecture, its premises compromise the orchestration of such
dynamical operations. Therefore, the authors have created a P4 environ-
ment that eases the deployment of service-centric approaches with TCP/IP.
Through P4, they can exploit a fully programmable environment that coor-
dinates the network behavior customization on the fly.

In their proposal, the P4 devices identify the services and micro-services
through two different 32-bit header fields in the Ethernet packet. Based
on this, the authors design the P4 SW to handle TCP/IP, Ethernet, and UDP
protocol stacks through four customized match/action flow tables by the
parsed packets. Besides, they leverage the P4 Runtime API with the BMv2
to manage the entries at the routing tables and required registers. In sum,
the goal is to route the incoming packets following a service-centric model
that deals with the IP addresses of the destinations.

To evaluate their approach, the authors use Mininet to simulate a face
recognition service. In this scenario, a P4 SW connects the face recognition
service and has to deliver the packets to one of three available servers.
Moreover, the programmable device must provide the reverse path from
the server to the face recognition application. Nonetheless, the published
work [88] does not addresses some metrics to evaluate its performance.
Therefore, it seems more like a proof of concept in development.

3.3.6 Future Internet Fusion

Considering what the current Internet represents to society, replacing it
for another architecture seems unlikely. The full replacement for a new ar-
chitecture that solves everything may even be unfeasible because the cur-
rent stack has been proved over time. Considering this, current efforts
focus on creating a heterogeneous network, in which the cooperation be-
tween disjointed architectures foster the Internet of the future.

One example that have focused on the interoperability of different archi-
tectures is Future Internet Fusion (FIFu) [89]. In this work, a transparent
framework has supported the inter-communication between different archi-
tectures’ resources. Besides, it has provided backward compatibility with
legacy technologies and global access to resources based on the project’s
programmability and flexibility. Moreover, FIFu has two-layer that com-
pose its data and control planes, where a set of mechanisms enable the
cross-mapping of resources and deliver any request of the focused archi-
tectures. At the time of the [89] publication, the authors focused on the
current IP and two ICN cases in the form of NDN and PURSUIT architec-
tures. Through these projects, the authors evaluate their proposal’s perfor-
mance under three distinct scenarios, namely, a web-browsing application,
a live video streaming, and an on-demand video streaming.
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Regarding FIFu architecture, the Adaptation Layer represents the data
plane, wherein the network equipment acts forwarding and routing the data
packets between isolated network clouds. In this, there are gateways called
FIXPs that convert messages from/to those network clouds and emulate a
communication endpoint. In other words, the FIXPs’ role is to make the
incoming packets compatible with its destination network architecture, re-
gardless of its original nature. In broad, each FIXP has the required in-
formation to format each packet according to its destination architecture,
including the semantic meaning of each protocol field and metadata.

On the other hand, the Intelligent Layer implements Future Internet Con-
troller (FICs) that manages the underlying FIXPs. This layer is the FIFu’s
equivalent to the control plane. Each FIC in is charge of setting, man-
aging, and supporting the FIXP operation, measuring their performance.
Moreover, each FIC stores, manages and maintains an identifier for each
resource of each network architecture. In this way, the Intelligent Layer
has a list of the underlying FIXP topology and a repository of mappings
between identifiers to assist the FIXP operation on the fly. Regarding the
resource monitoring and configuration, a FIC can set a FIXP to notify the
bandwidth usage, CPU usage and synchronize their operation.

FIFu identifies resources through Uniform Resource Identifiers (URIs)
[90]. That is, a sequence of characters bound to a physical or virtual re-
source to identify and/or locate an entity. In this way, FIXPs look at their
cache for a URI mapping to convert an equivalent output message upon re-
ceiving a valid packet. These representations are the basis for a recursive
or iterative name resolution to forward packets. In the first, FICs search un-
til finding an entity that has the required information to set an underlying
FIXP, while, in the latter case, a FIC points to another FIC that may have
the information. Focusing on these interactions between FIXPs and FICs
and between FICs and FICs, FIFu establishes a tailor-made protocol that
enables backward compatibility with legacy mechanisms and application
while being flexible to encompass new primitives and architectures.

Taking advantage of this setup, the authors validate the proposal through
3 tests that exploit the interoperation between IP, NDN, PURSUIT archi-
tectures. In every test, three clients represent each stack, as well as three
servers, wherein one server is a real IP web-server and the other two are
NDN and PURSUIT video servers. Two routers interconnect these clients
and servers at the edge of each network with a central FIXP that connects
to the Intelligent Layer. Every entity in this network is a VM with Control
Process Unit (CPU) cores of 3.33 GHz and 2GB of Random Access Memory
(RAM), except the IP web-server that is a real existing server. Both NDN
and PURSUIT chunk sizes are set with 4400 bytes. In the first scenario,
NDN and PURSUIT clients fetch the IP server to test the web-browsing
application. In the second, a PURSUIT video server provides a live video



64 3.3. SRQ1: FIA and SDN convergence Chapter 3

stream for IP and NDN clients. In the last, the PURSUIT video server pro-
vides a fragmented video to maintain a video-on-demand application. The
authors have evaluated performance metrics in terms of fetching and pro-
cessing time, consumed bandwidth, and messages forwarded per second.

FIFu’s future seems to rely on novel scenarios where this framework
cooperates with real applications. In these future cases, FIFu would be
deployed at edge networks, which it would redirect traffic from IXPs re-
quiring conversion between architectures, or at 5G broadband cellular net-
work slices, connecting different network architectures. Nonetheless, the
authors acknowledge that the current design presents some limitations in
terms of security, scalability, and lack of maturity.

3.3.7 Alloy

In the same line of multiple architectures interoperation, Jahanian et
al. [91] develop a framework for seamless operation and content accessi-
bility among content-oriented architectures . This project is COIN, which
focuses on the current and future Internet architectures named NDN, MF,
and IP. Their proposal is based on gateways that translate the communica-
tion protocols to consumers without modifying the original concepts.

COIN is a framework developed in JAVA that establishes three opera-
tional layers to achieve their goal. The first is the Routing Layer, an equiv-
alent to the SDN’s Data Plane. In this, the network devices forward and
route the packets following their aimed recipient. The second layer is the
Service Layer, an abstraction equivalent to the SDN’s Control Plane. In
this, mechanisms provide the required mapping for each data object at the
upper layer. Finally, the third layer is the Information Layer, which is sim-
ilar to the OSI’s Application Layer and stores the data objects available in
the network. In this way, the authors point that they ensure confidentiality,
integrity, and provenance in their environment.

Besides, there are three essential components in their proposal. The first
is the gateway, which translates and acts as a bridge between the different
network domains. In some cases, the gateway can store content to ensure
one of ICN pillars of in-network caching for the architectures. The second
is the Name Resolution that ensures the naming structure of each architec-
ture and provides an interface to achieve cross-domain applications. The
third is the Object Resolution Service that retrieves the requested informa-
tion, generating a coherent name to the recipient service domain.

Regarding the evaluation of their proof of concept, the authors employ
the CCNx v0.8.0 for NDN, the latest version of MF, and a basic Linux im-
plementation of IP forwarding. In this way, they exploit COIN’s forwarding
efficiency, latency, performance, and scalability. In one setup, they hand a
personal testbed up with 5 VMs with 1 Gigabyte (GB) of memory and the
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Ubuntu 14.04 to emulate a client, 2 routers, 1 COIN gateway, and 1 con-
tent provider. In another moment, they exploit the Open-Access Research
Testbed for Next-Generation Wireless Networks (ORBIT) testbed [92] to em-
ulate a grid topology of 400 nodes, each with 4 GB of memory and running
Ubuntu 14.04. Nonetheless, the authors still point to the need for more
evaluation with different services to investigate their proposal.

In another work, Jahanian et al. exploit an Alloy-based Information-
Centric Interoperation framework [93]. In this model, they consider pull/-
push -based communication models with static and dynamic contents, while
analyzing failure and mobility. The authors do not address the COIN frame-
work though, yet there are some synergies with both works.

3.4 SRQ2 and SRQ3: Takeaways and Opportu-

nities

Several FIAs seek to redesign the Internet. Table 3.2 correlates each
presented FIA and NG, summarizing their principle, communication model,
and highlighting their work with SDN.

First of all, we can observe the FIA proposals heterogeneity. Even when
we consider ICNs architectures like NDN, MF, and PURSUIT, they present
disparities in their design principles and communication model. Consid-
ering the FIA and SDN convergence, the related works present a diver-
gent approaches. Some proposals only seek to optimize the infrastructure
of each architecture with SDN [83–86, 88], while others aim at the inter-
operability of FIAs [89, 91, 93]. Moreover, they have focused on different
technologies, methodologies, and assumptions.

On one hand, [83], [84], and [88] focus on their Data Plane, lacking more
data about their Control Plane. On the other hand, [85] presents a Con-
trol Plane that supports a catalog of content delivery services for its Data
Plane. [86] combines Stratum O.S. and a Python script at its Control Plane
to set its underlying Data Plane. [89] presents Future Internet Controllers
with high-level functions to manage its Data Plane, provide a hierarchical
distributed mapping between the available network resources, and decen-
tralized knowledge over FICs. Once [93] and [91] apply a different frame-
work based in JAVA, they do not require a Control Plane, exploiting a reso-
lution service to foster the data exchange between their architectures.

In summary, the related work shows that the literature is lacking in a
native FIA control agent for SDN. This is a major research opportunity,
wherein a controller can support its architecture’s features and share the
same design principles. In other words, a native controller can present the
same communication, security, and other relevant cornerstones in its de-
sign. Through exploiting NG in this work, we can broaden the FIA and SDN
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convergence presenting a native SDN controller project that fosters NG’s
self-organization structure, contract-based operation, and sets the underly-
ing Data Plane based on its naming structure.
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Chapter 4

NovaGenesis Control Agent with
Future Internet eXchange Point

THIS chapter explores the design choices taken to develop a functional
NovaGenesis Control Agent (NGCA). Under this scope, this chapter

covers two major themes concerning an NG enabled Data Plane with P4 and
the NG-based SDN controller for Future Internet eXchange Point (FIXP).
It is crucial to highlight that this FIA Control Plane is the most relevant
contribution once it seems to be the first native controller for a FIA.

4.1 A New NG Adaptation Header

As presented before, NG messages are encapsulated on legacy Link Layer
technologies. Moreover, NG deals with software and hardware routing by
its Forwarding/Routing Line. Formerly, NG protocol has not presented any
reserved bytes. This yields that any data related to the network topology
could not be retrieved. As a consequence, how can we develop a mech-
anism to retrieve the crucial IngPort and Future Internet Exchange Point
Switch (FIXPSW) ID to set the underlying DP in the FIXP scenario? One of
the first ideas to address this was to deploy a NG instance on each FIXPSW
Virtual Machine VM to generate a NG message that would inform the CP
and it should work alongside with P4. By all means, this idea was discarded
once it is unfeasible, considering that every network element would require
a NG instance network element. Therefore, how could we converge FIXP
with minor adjustments to the NG protocol?

These questions have granted some insights on NG inter- and intra-
domain routing applications, lessening major NG structural adjustments.
Firstly, the NG communicating protocol has been modified, adding four re-
served bytes to the NG Adaptation Header to depict and enable the easy as-
sess of the FIXP network infrastructure, in terms of FIXPSW IDs, EPs, and
IngPorts. These bytes foster a self-managed and self-aware environment,
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yet they modify the structure for every NG use-case up to date. Neverthe-
less, reserved bytes are a common practice in several network protocols.
For instance, Internet Protocol version 4 (IPv4) [98] and Internet Protocol
version 6 (IPv6) [99] present optional fields for special cases of operation.
For most NG cases, these new bytes are filled with the “0x44” value and
the NG Adaptation Layer ignores them. In this way, the previous concepts
remain intact, regardless of these four extra bytes.

Nonetheless, these four bytes takes a new role for the specific FIXP sce-
nario. For now, the first reserved byte remains unused. On the other hand,
FIXP.P4 fills the second byte with its Switch Identifier (SWID), a value that
is the unique ID for a FIXPSW, and the third byte with the packet’s Ingress
Port. At last, the fourth byte notifies the Last Fragment of a NG message,
once FIXP.P4 must be aware of where a fragmented message ends. Figure
4.1 illustrates this reserved bytes sequences.

Figure 4.1: NG Communicating Protocol and the Reserved Bytes.

Therefore, either FIXP.P4 or the proper sender PGCS fills these reserved
bytes. The next list summarizes the reserved bytes, while Figure 4.2 exem-
plifies a NG message that has 3 fragments with the new reserved bytes.

• First reserved byte: Unused byte.

• SWID byte: FIXP.P4 fills this field with its own SWID data when de-
parsing an incoming NG packet.

• Ingress Port byte: FIXP.P4 fills this field with the Ingress Port from
the incoming packet when deparsing a NG packet.

• Last Fragment byte: The emitter PGCS fills this field with two values.
If it is last fragment, it receives the value “0x46.” In cases of on-going
fragments, it has the value “0x45.”

Even though these might seem limited at this moment, NG can employ
these four new bytes in other future scenarios that we do not foresee yet.
In the FIXP scenario, this method enables a NGCA that is aware of the
underlying network topology, that can self-manage its data based on the
incoming packets, and can be scalable to meet any type of topology layout
without a previously configured routing table in its knowledge.

4.2 NG enabled Data Plane with P4

This section focuses on exploring the decisions taken on the P4 architec-
ture to develop a functional FIXP that can manage NG data traffic. In this
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Figure 4.2: Example of an ongoing NG message that has 3 fragments that has been
sent by an PGCS and deparsed by FIXP.P4.

way, it covers the P4 headers modeled for NG communication protocol, the
fragmentation case, and the NG broadcast scenario.

4.2.1 NG Headers

As P4 proposes to handle any custom protocol, the first step is to enable
NG communication standard. In this way, P4 can deal with any incoming
NG byte stream and translate this sequence into meaningful NG values.

In the first place, it is important to once more highlight the existence of
the fragmentation of NG messages. This fragmentation can impact on the
NG Routing Line once the packets are divided and, so, fragments might not
present the Routing Line and the Destination Host Identifier (DHID) after
the first fragment. Figure 4.3 shows two distinct scenarios for a NG “Hello”
of 273 bytes, wherein the case A shows a packet with the full NG Message,
while case B depicts the fragmentation of this original message.

Considering NG scenarios that use the Ethernet protocol with a Maxi-
mum Transmission Unit (MTU) parameter bigger than 140 bytes, the first
fragment presents the NG Routing Line, while the following fragments do
not. As a consequence, P4 must consider two distinct NG headers for its
modeling. For the full and complete NG messages or fragments with the
Routing Line, P4 must model the NG bytes up to the NG Routing Line. In
this way, P4 assesses the Reserved Bytes, Message Identifier (MsgID), Se-
quence Identifier (SeqID), and the Destination Host Identifier (DHID). At
this moment, FIXP considers an intra-domain communication.

Listing 4.1 illustrates the P4 NG header for the first fragment of packets
with MTU bigger than 140 bytes. Notice that this header models the encap-
sulated bytes in the Ethernet payload. From this starting point, the first 32
bits from the Ethernet packet payload are the four NG reserved bytes. The
next 16 bytes represent the NG Adaptation Layer, i.e. 32 bits for MsgID, 32
bits for the Fragment Sequence, and 64 bits for Message Size. After this,
the NG message begins. For full NG messages or first fragments, the first
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Listing 4.1: NG headers on P4 modeling.

header novagenesis_hasntDHID_t
{

bit<32> rsvd ;
bit<32> msgId;
bit<32> fraqSeq ;
bit<64> msgSize;
bit<672> iniMsg ;
bit<64> dhid ;

}

NG Command Line specifies the NG Routing Line, which presents the Source
and Destination Identifiers. Considering this, P4 must skip 672 bits to reach
the exact position where the DHID is expected. After these 672 bits, the
next 64 bits defines the DHID.

Nonetheless, NG presents scenarios where a full NG message must be
fragmented once MTU limits the Ethernet payload length and the following
fragments after the first (Figure 4.3’s case B) do not present the NG Rout-
ing Line. In this way, the previous header in Listing 4.1 is valid for the first
fragment and the first one only, once it presents the DHID on its expected
position. On the other hand, the following fragments that are sent only
match the fields up to the NG Adaptation Layer. In this case, Listing 4.2
models the following packets after the first fragment. In the Ethernet pay-
load, the first 32 bits represents the 4 NG reserved bytes and the next 128
bits represent the NG Adaptation header. After these 160 bits, the proper
NG message continues.

Listing 4.2: NG headers on P4 modeling.

header novagenesis_hasntDHID_t
{

bit<32> rsvd ;
bit<32> msgId;
bit<32> fraqSeq ;
bit<64> msgSize;

}

4.2.2 NG Packets and Fragmentation

After solving how to model two distinct NG headers, another challenge
relates to how P4 could forward NG fragmented packets, once only the first
fragment presents the NG Routing Line. The first approach to decide if a
packet has a NG Routing Line is to check the Fragment Sequence control
bytes. Notice that regardless of the case in Figure 4.3, the first fragment or
a full message presents this value as “0.” Upon assessing this field, P4 can
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select which NG header must be applied to parse an incoming NG packet.
Listing 4.3 illustrates the P4 algorithm to determine this.

Listing 4.3: P4 selecting the proper NG header.

bit<96> hasDHID = packet . lookahead<bit <96>>();

transition select (hasDHID & 0 x f f f f f f f f )
{

0: novagenesis_hasDHID_parse ;
default : novagenesis_hasntDHID_parse ;

}

This algorithms selects the proper NG header to parse an incoming NG
packet. As P4 does not incorporate complex mechanisms in its frame-
work, notice that the structure packet.lookahead<bit<96»() shifts 96 bits
from the Ethernet Payload start and stores these 96 bits on hasDHID vari-
able. On the next line, transition acts as an decision structure to select
the adequate header upon validating the Fragment Sequence. If this field
is equal to 0, the bitwise AND operation hasDHID & 0xffffffff results in
a 0 value, and the header novagenesis_hasDHID_parse is selected. For
any other combination of Fragmentation Sequence, the header novagene-
sis_hasntDHID_parse is chosen.

This solves the first issue of dealing with distinct NG headers. Through
this transition, P4 can parse the packets with the proper NG header. How-
ever, one can point that only the first fragment presents the Routing Line,
so how can we forward ongoing fragments to their destination?

4.2.3 P4 enabled Future Internet (FI) fragmentation

PGCS can fragment NG messages into several NG frames and, so, send
fragmented packets to its peers. Nonetheless, the NG Routing Line appears
only in the first fragment for packets created on networks of over 140 bytes.
Thus, any kind of Forwarding HW must either encompass the NG remount-
ing scheme to retrieve this or create a novel way to assess this data.

Taking advantage of the NG headers structure, i.e. novagenesis_hasDHID
and novagenesis_hasntDHID, P4 is aware of which fragment presents the
NG Routing Line. Therefore, P4 is already ready to reach the DHID data.
Besides, this language presents the Register data structure, which is a
stateful memory that can be managed through actions [100]. Through this
structure, P4 can store data for a unspecified time. Even though DHID and
Registers can be applied to this solution, the mechanism still lacks on the
aspect of retrieving which message the fragment belongs.

As a consequence, we must consider the NG Message ID as the index
to retrieve the DHID for every fragment. In this way, a hash function is
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applied on P4 to bind the DHID received on the first fragment, through
novagenesis_hasDHID, and make it available for incoming fragments, on
novagenesis_hasntDHID. Currently, combining Registers and hash function
is the only way available for storing a data and retrieving it afterwards.
Listing 4.4 defines the hash function to store the DHID and Message ID.

Listing 4.4: P4 releasing storage.

hash(hash_map_index , HashAlgorithm. crc32 , ( bit <10>)(0),
hdr . novagenesis_metadata .msgId}, ( bit <10>)(1023));

hash_map. write ( ( bit<32>)hash_map_index ,
hdr . novagenesis_metadata . dhid ) ;

Nonetheless, one can cite that we solved the aspect of making available
this data and that P4 forwards every fragment based on the Message ID
index. Although, for how long should we make this data available? Even
though we are in a controlled environment, P4 devices are limited HW.
Taking advantage of the reserved bytes, the fourth points the last fragment
of a given message. Whenever a last fragment is sent, the sender’s PGCS
writes the hexadecimal value of 0x46 in this reserved byte. When P4 detects
this value, it can clear the register through the hash function, releasing
some storage space. Listing 4.5 illustrates the algorithm for this.

Listing 4.5: P4 releasing storage.

i f (hdr . novagenesis_metadata . dhid != 0 &&
(hdr .novagenesis_hasntDHID. rsvd & 0xff ) == 0x46)
{

hash_map. write ( ( bit<32>)hash_map_index , 0);
}

4.2.4 NG Broadcast Rule

As explained before, NG sends “Hello” messsage periodically for building
a NG domain dynamically. During this startup process, every NG message
exposes the origin’s IDs to a communication peer through a series of NG
messages. As a consequence, the NG Routing Line presents the source’s
IDs and the NG broadcast address “FFFFFFFF” as the destination ID. Af-
ter discovering the resources available, every communication peer knows
the related IDs of its partners, generating NG Routing Line for a specific
destination host. In other words, we can summarize this by saying that
NG presents two types of Routing Lines, one that presents the broadcast
address for “Hello” and another with explicit the destination IDs.
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As a consequence, NG must either set the P4 on the fly with this NG
broadcast address or create a mechanism that establishes this entry at the
FIXP’s Routing Table during its startup. Simplifying the process for now, it
was chosen to modify the FIXP startup to perform this task.

In this way, FRHS performs a NG Broadcast rule addition into NG RT
as a startup procedure. This mechanism creates a P4 multicast group that
maps every NG host, its FIXP network interface, and the CP interface to
the broadcast “FFFFFFFF” address at FIXP startup. This method is based
on the “ng_broadcast” P4 action that forwards any incoming NG “Hello”
broadcast packet to the multiple NG EP when this DHID key matches the
P4 multicast rule. In order to do so, the P4 program must have the required
metadata fields to enable BMv2 multicast, which is the mcast_grp, a non-
zero value that assigns a group of peers to a valid group ID.

intrinsic_metadata.mcast_grp : An ID to associate multiple EP to
replicate a packet from the BMv2 ingress pipeline.

Nonetheless, BMv2 replication engine multicasts the packet to every
Egress Ports pointed by this rule. Therefore, a packet back-flow happens
when we consider this, forwarding a packet to its origin. For scenarios
with more than one FIXP this yields in a sharp unwanted increase of traffic,
where two neighbor FIXP will perennially exchange data due to this mul-
ticast rule. In order to avoid this, a filter in the Egress pipeline avoids to
replicate multicast packets at the same Ingress Port. Currently, this can be
done trough the following Algorithm depicted on Listing 4.6.

Listing 4.6: P4 Multicast Filter.

i f (standard_metadata . egress_port == standard_metadata .
ingress_port )

{
mark_to_drop(standard_metadata ) ;

}

In other words, this code segment avoids to replicate a multicast packet
in the Egress Port that matches the packet’s original Ingress Port. Another
way to solve this issue is to consider a single multicast rule for each FIXP
network interface, which has not been evaluated due to time constraints.

4.2.5 P4 Aware Control Agent

So far, the NG development addressed the different headers and the dis-
tinct purposes of “hello” and exchanging data messages. Through these,
the DP forwards any incoming NG packet to its destination, multicasts a
NG broadcast message, or requests a configuration from the CP.
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Nonetheless, how can the controller become aware and take a decision
to set the underlying DP, creating a dynamical knowledge to adjust the
underlying network topology without human interference? Is it practical
to set this data for each topology? Is it even sane to consider a future
FIXP application in a real environment that one has to map every device,
exchange point, and network topology?

In order to create such a NG Control Agent (NGCA) based on P4, FIXP.P4
exploits the NG reserved bytes to write the SWID and the respective IngPort
from a NG packet. After this, the packet is sent to the CP, carrying the
meaningful data that depicts the network topology at the NGCA. Listing
4.7 illustrates the algorithm to write these data based on the P4 language.

Listing 4.7: P4 writing the SWID and the packet’s Ingress Port.

i f (hdr .novagenesis_hasDHID. isValid ( ) )
{

hdr .novagenesis_hasDHID. rsvd = SWID*65536 +
(( bit<32>)standard_metadata . ingress_port&0xff )*256 +
(hdr .novagenesis_hasDHID. rsvd&0xff )

}
else if (hdr .novagenesis_hasntDHID. isValid ( ) )
{

hdr .novagenesis_hasntDHID. rsvd = SWID*65536 +
(( bit<32>)standard_metadata . ingress_port&0xff )*256 +
(hdr .novagenesis_hasntDHID. rsvd&0xff ) ;

}

Regardless of the NG header, P4 writes the same sequence of bytes of
distinct data at the NG Adaptation Layer. The second NG Reserved Byte
assumes the role of point the SWID, the third indicates the IngPort, and the
fourth the Last Fragment. Notice that the bitwise logical AND operation
acts as a forced cast to reduce bigger variables, as SWID, to an 8-bit value.
Figure 4.4 illustrates graphically how P4 process the Reserved Bytes.

Figure 4.4: NG possible transmission scenarios.

After this, P4 forwards every packet to the NG CP as illustrated on Figure
4.5. Upon receiving this packet, the NGCA can now create a dynamical
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knowledge based on these reserved bytes, managing each request based
on its own data and through the SWID and incoming IngPort.

Figure 4.5: Example of a NG packet forward to the CP by P4.

4.2.6 NG P4-based Data Plane

Figure 4.6 illustrates the FIXP.P4 model for NG using the P4 pipeline.
Meanwhile, Figure 4.7 presents the FIXP.P4 event diagram, encompassing
the actions from receiving a NG packet until the its Egress State. Notice
that this figure has two different packet flows, where the left side considers
the first NG packet fragment of a message, i.e. presenting the DHID in
its fields. In this, FIXP.P4 applies the broadcast and ng_SetSpec rules for
known DHID destinations. On the other hand, it forwards the unknown
packets for the NG Control Agent rules. On the right hand side of the
sequence diagram, FIXP.P4 considers the other NG fragments that does
not determine the DHID field. Therefore, it has to retrieve the MsgID from
the P4 hash function and decide if its a known or unknown packet. After
this point, the sequence follows the same procedure of the left hand side.

Figure 4.6: FIXP diagram for NG Data Plane exploiting the P4 pipeline.

4.3 NovaGenesis Control Agent

NG Control Agent (NGCA) has no prior knowledge of the physical net-
work topology. Even though FRHS knows the NG peers’ EP for the broad-
cast rule, this is the maximum knowledge that the environment has about
NG peers. In this way, NGCA acquires all the data belonging to the NG peer
hosts, FIXPSWes’ ID and network interfaces on the fly. This sub-section
presents the design choices to develop suc NGCA, covering the expansion
of the PGCS, modeling the FIXP mechanisms into a new PGCS object, and
building its knowledge to set the underlying network topology.
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4.3.1 PGCS Control Agent

To fulfill our goal, NGCA extends the current PGCS scope. Firstly, PGCS
has received a new initialization for FIXP scenarios to create the Control
Agent. Listing 4.8 exemplifies this startup process that establishes the com-
munication port 0 for an NG intra-domain communication with Ethernet
protocol. For this case, “-fixp” option sets the PGCS to become the FIXP
controller, using its host “Eth0” network interface to communicate. Finally,
this agent exploits Ethernet packets with up to 1400 bytes of MTU.

Listing 4.8: NovaGenesis Control Agent Initialization Example.

1 ./PGCS ./ 0 Intra-Domain Ethernet -fixp Eth0 1400

Upon initializing PGCS with such parameters, an instance of the NGCA
is created referring to the specific PGCS FIXP Controller C++ class. This
object has all the atributes and methods required to oversee FIXP opera-
tion and its Data Plane. For instance, it presents raw sockets for NG and
FIXP communication protocols, a database to create a dynamical knowl-
edge, called FIXP Knowledge, about the underlying network topology, and
the required modeling to create the FIXP primitives.

4.3.2 FIXP Knowledge

At most of FIXP application, PGCS builds an internal database based on
the received NG packets called “fixpKnowledge.” This knowledge database
exploits a C++ two-dimensional vector that conveys a N x 6 matrix 1. The
variable N determines the number of rows and 6 the fixed number of columns
in this structure. Each row has a specific entry mapped for an unique set
defined by HID, IngPort and SWID retrieved from every NG packet that
reaches the NGCA, reflecting the underlying network topology. Moreover,
assumes that the network infrastructure can encompass more than one un-
derlying FIXPSW. In other words, this database can present several entries
of a given HID, yet SWID row changes per SWID. Table 4.1 illustrates the
structure and the following list explains each aspect of FIXP knowledge.

• HID - The index 0 column registers the Source Host Identifier (SHID)
for each NG packet as a string type value.

• MAC - The index 1 column stores the source and destination Ethernet
MAC address 12 bytes field as a string.

• Switch Identifier - The index 2 column collects the SWID data from
the NG second reserved byte, storing it as a string type with the value
of (“s” + SWID reserved byte).

1Notice that the most common vector is the uni-dimensional case, where we declare
a variable with n lines. In C++, this could be done by specifying ”char variable1[n].´´
For the two-dimensional case, the variable represents a n x m matrix with n lines and m
columns. In C++, this is done by determining char variable2[n][m].
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Table 4.1: FIXP Knowledge, a two-dimensional Vector Structure.

fixpKnowledge HID MAC
Switch
Identifier

Ingress
Port

Sequence
ID

Valid Table Add

fixpKnowledge [0][0] [0][1] [0][2] [0][3] [0][4]
[0][5]

fixpKnowledge [1][0] [1][1] [1][2] [1][3] [1][4] [1][5]

fixpKnowledge [2][0] [2][1] [2][2] [2][3] [2][4]
[2][5]

... ... ... ... ... ...
...

• Ingress Port - The index 3 column picks the IngPort data up from the
NG third reserved byte. This cell stores it as an string type variable.

• SeqID - The index 4 column represents the SeqID data that is gener-
ated upon sending a Table Add-Modify primitive. Therefore, it receives
a null value at a new entry and receives a string value upon sending
that primitive. This sequence ID is a value that retrieves the same row
index number plus one. In other words, the SeqID is 1 for the entry at
the line 0. Meanwhile, this field is important to track and handle the
FIXP Primitive management.

• Valid Table Add - The index 5 column sustains the successful entry at
FIXP RT data from the FIXP Ack packet. Therefore, it receives a string
value “NOT” at a new entry and PGCS only changes this value to a
string of “OK” when NG retrieves an Ack packet that points to a valid
entry at FIXP SW. This also enables the reinsertion packet process.

As the network topology can present several FIXPSWes, NGCA asso-
ciates the HID and SWID fields to map the network topology and generate
new entries to its knowledge. This yields that fixpKnowledge can display
more than one entry for the same HID, yet with distinct SWIDs.

Through the association of HID, SWID, and IngPort columns, NGCA be-
comes aware of the underlying network topology, in terms of how to reach
a NG host based on the FIXP SW and its network interface. Figure 4.8
represents the flowchart for NGCA managing its knowledge as new pack-
ets arrive. It is necessary to highlight that this flowchart depicts only the
processes related to analyzing an incoming packet, adding new entries, and
modifying an existing entry on the FIXP Knowledge database.

As can be seen in Figure 4.8, the NGCA analyzes every packet that
reaches the CP. This element first parsers each NG packet to retrieve the
MAC address, the IngPort, the SWID, and the SHID fields. After this, NGCA
looks up at the FIXP Knowledge table to verify if this SHID has already an
entry related to the considered HID and SWID by looking the first and third
columns up. In case of a new peer or a different FIXPSW, NGCA records
this related data in a new FIXP Knowledge line, which looks similar to the
n-th entry depicted on Table 4.2.
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NO

YES
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Figure 4.8: NGCA Flowchart for building its FIXP Knowledge.

Table 4.2: N-th entry at FIXP Knowledge.

Line Index HID MAC
Switch
Identifier

Ingress
Port

Sequence
ID

Valid Table Add

n - 1 ... ... ... ... n - 1
...

n HID
MAC
ad-
dresses

SWID IngPort n
“NOT”

n + 1 ... ... ... ... n + 1
...

4.3.3 FIXP Primitive Conceiving and Processing

NGCA acquires its knowledge on the fly. At some point, it will receive a
valid packet with the destination ID that matches its database or, very in-
terestingly, PGCS can subscribe on NRNCS for clues that can help on con-
figuring FIXP tables. Figure 4.9 summarizes the NGCA process to analyze
a received packet with its database.

At first, PGCS awaits for new packets and parses it, retrieving its DHID.
Then, it verifies if knows how to reach this destination or not based on the
FIXP Knowledge. For a unknown destination, NGCA decides if this packet
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Figure 4.9: FIXP Table Add-Modify primitive conceiving flowchart.

relates to a NG hello broadcast or not. If it is not a hello, it registers the
packet’s source data at FIXP Knowledge if it is related to a new entry and
puts this packet on the GW Input Queue through the SHM to be further
reinserted into the network. This process is common for NG message pro-
cessing that pushes the packet into a queue, so PGCS can deal with these
packets at a more convenient moment. In other words, a packet enters the
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PGCS processing packets until NGCA learns how to reach its destination
and reinsert it into the network. Otherwise, NGCA registers the packet’s
source data at FIXP Knowledge if it is related to a new entry and discards it.
Meanwhile, it is important to highlight that this happens because FIXPSWes
have already forwarded the hellos based on the DP based on NG broadcast
rule, i.e. DHID = “FFFFFFFF.” In this way, NGCA optimizes GW queues by
entering only packets with host specific DHIDs to be further delivered.

Alternatively, NGCA will learn how to reach a destination in a good time.
In this case, the packet’s DHID and FIXPSW fields matches the FIXP Knowl-
edge’s HID and SWID columns in an n line index. When this happens, it
gathers the IngPort and its built-in knowledge of P4 structures to build the
FIXP Table Add primitive. This data has is converted into a JSON pattern
and its construction is exemplified on Listing 4.9.

Listing 4.9: Table Add-Modify Primitive on JSON format.

1 {
2 "Ethertype": 0x1234,
3 "Seq ID": FIXPKnowledge[n][4],
4 "SWID": "FIXPKnowledge[n][2]",
5 "Thrift": 9090,
6 "Command": 1,
7 "Forwarding": ["FIXP_Switch_Ingress.novagenesis_forward"],
8 "Key List": ["FIXPKnowledge[n][0]"],
9 "Action List": ["FIXP_Switch_Ingress.novagenesis_SetSpec"],

10 "Action Param": ["FIXPKnowledge[n][3]"],
11 "Primitive Option": 0,
12 }

PGCS employs RapidJSON API [101] to create the JSON structure. This
conveys the FIXP standard to generate the Table Add-Modify primitive, in
which the fields either conveys NG, HID, or P4 related data to configure the
underlying FIXPSW. As a rule, JSON delineates that string type variable
must be represented between quotation marks. As an example, the key
“SWID” has the FIXP Knowledge value from the third column, e.g. ”s01.”
The other fields that does not present these marking signals are integers,
such as Ethertype, Thrift, or Primitive Option values.

Upon creating this JSON data structure, PGCS is ready to craft the FIXP
packet to configure the FIXPSW. Algorithm 1 explains this process. Firstly,
NGCA creates the FIXP Table Add primitive, encapsulating the JSON into a
Ethernet payload with FIXP Ethertype, i.e. 0x0900. After this, it sends this
setting through the FIXP Client Raw Socket Identifier (FCSID) raw socket.
If the packet is sent successfully within two minutes, NGCA moves to other
processes. If not, it tries to resend.
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Algorithm 1 FIXP Primitive Packet Generator

1: Creates the FIXP Table Add packet
2: Selects the FCSID raw socket to send the FIXP Table Add
3: while Try to send the packet for 2 minutes do
4: Sends the packet to FIXP Data Plane
5: if Packet sent successfully then
6: Problem = false
7: Break
8: else
9: Problem = true

10: Return Problem variable;

4.3.4 FIXP Acknowledgement Primitive

After sending any setting FIXP primitive, NGCA expects a FIXP Ack
packet.Figure 4.10 illustrates the flowchart of receiving a FIXP Ack, while
Listing 4.10 exemplifies the JSON data structure for a FIXP primitive Ack.
This algorithm validates the Ack Status field. For a valid Ack (“0”), NGCA
updates its FIXP Knowledge sixth column with the Ack’s “Seq ID,” writ-
ing the “OK” string value that points that this entry has been successfully
added into the desired FIXPSW. After this, NGCA is ready to initiate the
FIXP reinsertion process. In case of a received SeqID or SWID value that
does not point to a valid entry, PGCS disregard the Ack packet.

Listing 4.10: FIXP Ack Packet on JSON format.

1 {
2 "Ethertype": 0x1234,
3 "Seq ID": 1,
4 "SWID": "s01",
5 "Thrift": 9090,
6 "Command": 1,
7 "Handles": ["..."],
8 "Status": 0 or 1,
9 }

Notice that a FIXP Ack packet presents control information that, at this
moment, are not exploited by NGCA. These are necessary for the underly-
ing FIXP structure to forward the packet. Nonetheless, the Handles field
could be employed to further delete a specific entry on FIXP’s NG RT with-
out the key that generated it. On the other hand, NGCA takes into account
the SeqID, SWID, and Status fields to verify on FIXP Knowledge.
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Figure 4.10: NG FIXP Ack wait flowchart.

4.3.5 Reinserting Original Packet

After validating the FIXP Ack packet, NGCA reinserts the NG messages
with set DHID that are in its GW Input Queue into the network. Figure
4.11 illustrates the Reinsertion Process flowchart that initiates right after
receiving a successful FIXP Ack. This process takes the full NG message,
adds the NG Adaptation Layer control headers, fragments it into smaller
packets if needed, and generates the FIXP Reinsertion JSON. Listing 4.11
exemplifies this Reinsertion JSON model. It is important to highlight that
JSON encapsulates the full NG packet as a string value of the “Packet” key,
i.e. the sequence of bytes encoded as a string type variable.
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Figure 4.11: NG Reinsertion flowchart.

Listing 4.11: FIXP Reinsertion Packet on JSON format.

1 {
2 "Ethertype": 0x1234,
3 "SWID": "s01",
4 "Command": 5,
5 "Packet": String content with full NG packet,
6 }
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Following the FIXP primitive conceiving, NGCA creates the FIXP Rein-
sertion packet to be sent through FCSID. This packet takes up the same
structure as a regular FIXP primitive, i.e. it is an Ethernet packet with the
MAC address from the NG controller and the desired FIXPSW, FIXP Ether-
type (0x0900), and the JSON as its payload. As PGCS concludes sending all
the possible fragments that compose the original NG message, this related
information is discarded, i.e. deleted from its memory. Figure 4.12 demon-
strates how PGCS encodes a NG packet into a JSON format, which, in turn,
is later the FIXP Primitive Packet payload.

Msg SizeEthernet
Frame

7 bytes

"F:"I":"X":"P": 
"0":"1" Any 0x0900

Reinsertion
JSON

Dest. Addr. Source Addr. Ether.

7 bytes 2 bytes

Payload

n bytes

{ 
      "Ethertype": 0x1234, 
      "SWID": "s01", 
      "Command":  5, 

      "Packet":                               "                                                                         ", 
} 

NG Original Packet

NG Original
Packet

ng -m --cl 0.1 [<1 s Limiter > < 4 s S-HID S-OSID  
     S-PID S-BID> < 4 s D-HID D-OSID D-PID D-BID] 

...

MAC
Dest.

MAC
Source 0x1234

14 bytes

Dest. 
Addr.

Source
Addr.

Ether.

2 bytes

NG
Message
n bytes

NG Adaptation
Layer

NG Control 
Header
20 bytes

Figure 4.12: NG Reinsertion packet.

At last, Algorithm 2 explains how NGCA takes a NG message, generates
the NG packet, encodes this data into the JSON standard, and sends this
FIXP primitive down to the Data Plane through the FCSID. As the FIXPSW
is set for this DHID, NGCA expects to receive these same keys again if a
change happens in the network. For instance, a host can move, changing
where it is connected to FIXPSW.

4.4 Closing Remarks

The presented prototype for a NovaGenesis-enabled FIXP presents a P4-
based Data Plane and a native Control Agent. Therefore, it exploits the
state-of-the-art of SDN concepts to leverage a clean-slate FIA with a for-
warding framework that supports its novelties. Even though we had to
modify the original NG protocol standard to insert new reserved bytes, this
mechanism is flexible enough to be later exploited in future applications.

This proposal broadens the PGCS scope to manage a programmable Data
Plane without disobeying any of its original concepts. Remember that orig-
inally PGCS is an NG core service for gateway, proxy, and controller. This
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Algorithm 2 FIXP Primitive Packet Generator

1: Retrieves received NG message from GW Queue
2: Fragments the NG message
3: while Fragments to send do
4: Creates the FIXP Reinsertion packet
5: Select the FCSID raw socket to send the packet
6: while Try to send the packet for 2 minutes do
7: Tries to send through sendto function with FCSID raw socket
8: Break
9: if Packet sent successfully then

10: Problem = false
11: else
12: Break

Deletes NG original message from its memory;
13: Return Problem;

fact means that it can translate NG messages to any link-layer standard,
represent NG services to other domains, and, most importantly, control any
programmable device. Regardless of its more than a decade of existence,
NG cornerstones are still valid and relevant today.

Considering what has been proposed, this is the first step for a NG state-
ful routing table with programmable devices. Upon supporting NG native
concepts, the Control Agent is an integral component for this architecture.
For instance, it takes advantage of its naming structure to build the re-
quired knowledge to manage the underlying FIXP Data Plane.





Chapter 5

Evaluation Methodology

THIS chapter presents the evaluation methodology to assess the No-
vaGenesis Control Agent (NGCA) for Future Internet Internet eXchange

Point (FIXP). In this way, it covers the experimentation methodology, the
different virtualized network topologies and scenarios employed, the NG
application applied under these scenarios, and the performance metrics
overseen to validate this work.

5.1 Applied Tools

In this section, we explore and highlight every tool used or developed to
acquire the data related to the execution of the FIXP test.

5.1.1 Wireshark and Zabbix

Wireshark is an open-source network packet analyzer [102]. This soft-
ware captures the packet data in selected network interfaces in consider-
able detail. In this evaluation, Wireshark provides a network log based on
the packets captured and a Python script filters and assess this data.

Zabbix is an open-source monitoring software supported by Zabbix SIA
[103]. This tool oversees network and host metrics through Zabbix servers
and Zabbix agents, presenting several ways to visualize the acquired data
graphically. For example, this software can monitor the data traffic at a
network interface, the CPU load, the CPU utilization, and the memory uti-
lization on servers, virtual machines, applications, or websites. In this eval-
uation, it presents the Zabbix agents throughput.

5.1.2 Python and some related packages

In order to develop some additional tools for evaluating the FIXP envi-
ronment, the Python programming language was chosen due to its massive

91
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community support, ease of usage and remarkably customization of pack-
ages for several scenarios. The present methodology applies Python 3.8.2.

Scapy [104] focuses on the packet manipulation, allowing to create scripts
that interacts directly with OS sockets to deal with network traffic. In this
evaluation, Scapy 2.2.0 package version is applied.

Considering the data analysis, pandas [105] and NumPy [106] are Python
packages focused on data manipulation. Pandas is broadly applied on sev-
eral fields, such as finances, statistics, and engineering. Moreover, it pro-
vides a fast framework to deal with massive data volume, since its pro-
gramming is based on the union of C and Python. Besides, it also handles
diversified types of data sources and outputs handy, such as databases, Ex-
cel spreadsheets, or Comma-Separated Values formats. This work applies
pandas 1.2.3 and numpy 1.20.1 for its data analysis.

Finally, Matplotlib [107] has been applied for the graphical represen-
tation and visualization. Besides, this is an open-source tool to develop
charts, avoiding the use of proprietary software like Matlab. This works
exploits the Matplotlib 3.4.2 version for data representation in this thesis.

5.2 Evaluation Scenarios

Overall, the NG Control Agent (NGCA) manages any number of under-
lying FIXPs, regardless of the NG application. The presented tests encom-
pass the performance and functional evaluation on a controlled network
topology, depicting a virtualized Internet Provider that presents a variable
Autonomous System (AS) to connect NG clients.

Firstly, this sub-chapter presents a standard topology that interconnects
the NG peers at the same network, namely Standard Topology. Following
this, additional use cases present FIXP as an exchange point for connecting
the same NG clients. Therefore, we can evaluate the impacts of exploiting
FIXP against a virtualized network topology without it.

5.2.1 Standard Virtual Network Topology

The Standard Topology emulates a direct connection between the NG
peers. In this, VirtualBox virtualizes the NG hosts and a single virtual net-
work connects them. Figure 5.1 illustrates the generic standard topology.

Figure 5.1: Standard Topology to Set the Applications Up.
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This scenario has two strategical goals. Firstly, we need to figure out
the best NG parameters to enable the NG applications, presenting results
with the best QoS possible, minimizing delays, and boosting NG respon-
siveness. Moreover, we can contrast the Standard Topology result with the
FIXP experiments, validating the impact of FIXP in NG applications.

5.2.2 FIXP Topologies

The second scenario depicts an Internet Provider’s AS that exploits FIXP
as an interconnection point. This means that FIXP Data Plane (DP) connects
the NG clients, enabling their communication. As a result, NGCA must
set the underlying FIXP Switches dynamically, scattered over the network
domain. Figure 5.2 illustrates a generic FIXP scenario.

NG Host 1

Future Internet Exchange Point

Physical Layer

Control / Administrative Layer

FIXP

Abstraction Layer

NovaGenesis 
Controller

TCP/IP 
Controller

ETArch 
Controller

FIXP

FIXP

FIXP

FIXP

FIXP

Other
Controller

NG Host 2

Figure 5.2: Example of a network topology with FIXP as an exchange point.

In this hypothetical scenario, there are two NG hosts connected by FIXP,
which forwards NG packets through several FIXP switches at FIXP DP.
Meanwhile, these forwarding elements request guidance from the NGCA
at FIXP Control Plane (CP) for unknown packets. Based on this scenario,
we can evaluate FIXP impact and the NG Control Agent performance.
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5.3 NovaGenesis Content Repository and Dis-

tribution Application

This work exploits an NG application to validates the effectiveness of
the NGCA and the FIXP impact. In other words, our goal is to analyze the
overhead and overall costs of taking advantage of a P4-enabled forwarding
device and a native NG SDN controller. In this sub-chapter, we present the
NG application setup and the required settings to fulfill this experiment.

5.3.1 Setup

An ISP connects three NG hosts spread in its AS. These hosts use the
Content Repository and Distribution Application (ContentApp), where one
NG Source hires one NG Repository, requesting temporary storage for its
content. Moreover, one NG Network Cache replicates the content closer to
the NG Repository, depicting an ICN web concept through its NRNCS.

This ISP connects the three NG hosts by four different network topolo-
gies. Figures 5.3 and 5.4 depict the proposed evaluation scenarios. Notice
that every NG Source is on the left-hand side of the picture, presenting the
PGCS and the ContentApp with the Source role. On the other side, the
NG Repository also takes advantage of the PGCS and ContentApp with the
Repository role. Meanwhile, the NG Network Cache is at the bottom of each
picture, exploiting the core services PGCS, HTS, GIRS, and PSS. These last
three NG services are grouped under the NRNCS box.

In addition to these NG hosts, the network topologies encompass two
different cases. The first is the Standard Topology, in which the peers have
direct communication. Differently, the next three use cases present FIXP as
a future exchange point, forwarding the received Ethernet packets to their
destinations. At the FIXP DP, the number and arrangement of FIXP Switch
changes. In Figure 5.3, there is only one programmable forwarding device
at the left-hand side picture, while the right-hand side presents three P4-
based switches. In Figure 5.4, the left-hand side picture exploits three FIXP
Switches and the right-hand side presents five forwarding devices.

In every case, there is a varying number and size of locally stored photos
(.jpg or .jpeg) in the Source. Considering a case that does not fragment NG
messages, NG Source publishes 2500 photos of 780B are exchanged with
average throughput of 33 kbps. Meanwhile, another exploits 1000 photos
of 10kB with average throughput of 100kbps that fragments NG messages.
It is important to highlight that these two type of photos are adequate to
validate our proposal and BMv2 is not advised for greater throughput.

Focusing on the ContentApp presents some delays and hyperparameters
to enable this communication. In specific, NG Source’s PSS publishes the
data to the NG Repository and the NG Network Cache in the form of data
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bursts. Before transmitting a photo, the repository sends a subscription
request, which allows determining if the NB related to a file has been deliv-
ered or not. Besides, PSS provides specific time to live policies to avoid scal-
ability issues, freeing HTS storage from unused bindings or content [108].
Also, published content can be revoked by publishers.

In summary, the goal is to exploit the NG and FIXP novelties regarding
the communication among NG peers. The evaluation scenarios exchange
named-content of photos between the players and the FIXP infrastructure
aids in forwarding and routing this data. Nevertheless, the NG core life
cycle remains intact. First, NG initializes its core services in each host.
After this, it starts up the source’s and repository’s content distribution ap-
plications. Upon fulfilling this, the exposition of services begins, wherein
it exchanges NG Hellos as broadcast messages. Following, each peer dis-
covers possible NG peers. Afterward, the content source application offers
a SLA to the discovered repository applications to establish the terms of
operation. Then, the content repository application accepts the contract (in
the current version, contracting clauses have not been include). At last, the
source publishes and notifies the contents to the repository [108].

5.3.2 NG Parameters

Regarding the ContentApp, NG requires some hyperparameters to en-
able the data exchange between the NG Source and the NG Repository.
This configuration is made through each App.ini in each peer with the fol-
lowing parameters. Table 5.1 delineates the chosen parameters for each
photo file size following the same letter code from the list. These values are
essential because they impact on the NG performance and efficiency. These
hyperparameters establish two distinct test scenarios, which are not com-
parable. Each case presents a different throughput and dynamics. These
values were chosen based on tests to optimize the NG performance in terms
of packet loss and round-trip delays.

a. Delay Before Discovery: NG applications use this parameter to add
a delay before offering a service for the application exposition, i.e. it’s
no use discovering peers if an application hasn’t had time to finish
the exposure phase. After this delay, applications start subscribing
keywords to discover possible peer applications to work together. This
delay is relevant for establishing contracts between applications.

b. Delay Before Publishing a Service Offer: This parameter intro-
duces a delay between the moment when NGs’ applications discover
a possible partner and send them a service offer. In other words,
the NG application continuously subscribes to several NBs and de-
termines whether any set of NBs corresponds to a possible partner.
Whenever this occurs, the application sends a service offer to a dis-
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covered candidate peer in the form of an SLA. Therefore, the Delay
Before Publishing a Service Offer takes place between the moment a
NG source content application discovers a candidate partner (reposi-
tory) and its PSS notifies the candidate about a proposal information
object temporally stored in an HTS. Through this delay, NG guaran-
tees that any application can generate the SLA invite with all the nec-
essary data to the partner. This parameter is crucial for establishing
contracts among applications.

c. Delay Before Run Periodic: NG infrastructure performs a periodic
set of tasks at given times. For instance, the periodic discovery mes-
sages exemplify this concept, wherein NG applications send these
types of messages from time to time to discover new peers. In other
words, this can derive as the NG heartbeat (remember, the NG GW
operates in an event-driven way), where it controls how often all its
critical tasks execute. Therefore, the Delay Before Run Periodic pa-
rameter controls the execution of periodic tasks. This delay is relevant
for establishing contracts between applications.

d. Delay Before a New Peer Evaluation: Depending on the amount
of information obtained, NG can use this parameter to anticipate the
evaluation of a possible partner without resorting to periodical rou-
tines. In other words, NG can hasten its processes to establish a SLA
when it gathers the required NBs in its HTS. Hence, the Delay Before
a New Peer Evaluation enables a new evaluation of a possible partner,
regardless of the periodic delay. This time interval is also meaningful
until the contracting phase.

e. Photo Burst Size: After establishing the SLA, the application begins
to scan the directory where the source stores the data to send to the
contracted repository. The Photo Burst Size value narrows the max-
imum number of possible photo publications per NG message. As a
result, the application creates a queue of content based on the burst
size from time to time. This value is critical to avoid system overload
and publication delays due to the data exchange between NG pro-
cesses. Upon restricting the number of content in each publication,
NG guarantees the ideal flow rate for the application.

f. Delay Before a New Photo Publish: Alongside the Photo Burst Size
parameter, this parameter establishes the time interval between each
photo burst publication. Meanwhile, this parameter is crucial to evade
the system’s overload and a peak of internal delays.

Each PGCS requires an initialization to enable the NG communication
over a legacy link-layer technology. The following Listing 5.1 exemplifies
a bash script for this process, with a list below that describes the PGCS
initialization parameters. This example establishes the communication port
0 for an NG intra-domain communication with the Ethernet protocol. Re-
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Table 5.1: Content Repository and Distribution Application Hyperparameters Set-
tings for variable photos sizes.

Scenario Quantity a b c d e f
Photos of
780B

2500 10 20 40 25 0.7 3

Photos of
10KB

1000 10 20 40 25 0.3 1

garding the NG peer, “-pc” points that the PGCS host presents the NG Core
and wants to communicate with a known peer that has the MAC address
of “00:00:00:00:00:01” in its domain, using the Eth0 network interface to
send Ethernet packets with up to 1400 bytes of MTU.

Listing 5.1: PGCS Initialization Example.

1 ./PGCS ./ 0 Intra-Domain Ethernet -pc Eth0 00:00:00:00:00:01
1400

a. NG Service Path: This parameter establishes the path of the exe-
cutable program of the desired NG service.

b. Path to Store Operation Logs: This aspect points to a path where
the operation logs of the NG service is going to be stored.

c. Origin Communication Port: This instruction delimits the commu-
nication port for the NG service.

d. NG Role: This field sets the NG communication domain, which can be
the string value “Intra-Domain” or “Inter-Domain.”

e. Link-Layer Technology: This specification instructs PGCS for trans-
lating the NG message for a underlying link-layer technology. For ex-
ample, this can be “Ethernet,” “UDP,” or “LORA.”

f. Option: This setting establishes an NG communication mode, which
can be “-p” for a direct communication with known NG peers, “-c” for
enabling NG core services, and “-d” for an automatic communication
where a NG host discovers other NG peers.

g. Network Interface: This string value refers to which network in-
terface PGCS will use for its communication, which can be a real or
virtualized network interface on the host system.

h. Destination Address: For the “-p” option, this field determines which
NG peers are joining the communication. This can be a MAC, IP, or
any other link-layer technology address.

i. MTU: This value restricts the maximum communication packet length
that PGCS can conceive in bytes.
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5.4 Performance Evaluation Methodology

This sub-chapter covers the evaluation methodology for NG ContentApp
scenario, FIXP infrastructure, NGCA, and the host performance.

5.4.1 NovaGenesis

Considering the ContentApp scenario, NG deploys some mechanisms to
evaluate its performance. Some of the available metrics are:

• Instantaneous RTT: It encompasses the publication or subscription
RTT of Photo Burst Size ammount of content in the ContentApp sce-
nario. For example, if this parameter sets 5 photos per burst, the RTT
compresses the required time to publish or subscribe 5 photos. Figure
5.5 depicts the generic network flow between the required NG hosts.
Notice that the FIXP DP has been simplified to just a single FIXP.P4,
yet this can represent more than 1 forwarding device. Moreover, it is
crucial to highlight that this step happens after the complete estab-
lishment of the SLA between the NG hosts.

PGCS

Source

NG
App

PGCS

Network CacheFIXP

FIXP.P4 NRNCS

Publication
Round Trip

Time

PGCS

Repository

NG
App

Subscription
Round Trip

Time

Figure 5.5: Content Performance Metrics.

• Arithmetic Mean of RTT: It is the simple average of of the RTT.
Hereafter, each RTT is labeled as x. The arithmetic mean of x is cal-
culated by Equation 5.1, where x represents the instantaneous values
obtained by each sample and N the size of the samples population:

µ =
∑
x

N
(5.1)

• Standard Deviation of RTT: The standard deviation is an statistical
measure that determines the expected variation or dispersion of the
x [109]. The standard deviation is calculated by the Equation 5.2,
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where x represents the instantaneous values of RTT, µ the samples
average, and N the population of samples:

σ =
√∑(x− µ)2

N
(5.2)

• Standard Error: This statistical measure represents the deviation
between the average of the sample from the sample’s average popu-
lation [109]. In other words, it measures the accuracy between the
samples average and the overall population average. Mathematically,
Equation 5.3 represents this measure taking into account the standard
deviation (µ) and the population size (N ):

σµ = σ√
N

(5.3)

• Confidence Interval (CI): This statistical measure establishes a range
wherein it is expected to find a certain amount of samples within these
limits. Moreover, there is a confidence level that narrows or broad-
ens the interval range by a probability [109]. For NG, the algorithm
approximates the obtained samples to a Gaussian distribution. There-
fore, the constant 1.96 represents this approximation, and σµ is the
Standard Error. Mathematically, Equation 5.4 depicts this measure:

CI = 1, 96 · σµ (5.4)

• Lower Limit: This value expresses the lower limit of the CI. The Equa-
tion 5.5 delimits how to calculate this:

µlow = µ− CI (5.5)

• Upper Limit: This delimits the upper limit of the CI. The Equation 5.6
depicts how to calculate this:

µup = µ+ CI (5.6)

5.4.2 FIXP Delay Profile

Focusing on the FIXP infrastructure, its delay profile presents the time
overhead demanded from FIXP. In this scope, Figure 5.6 aims at explaining
and highlighting each specific delay covered.

Based on Figure 5.6, there are two types of delays. The first one is the
propagation delay between each layer 1. On the other hand, the processing

1Every time that we mention a propagation delay, throughput, and other network-related
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Figure 5.6: FIXP Time Profile.

delays are the time that it takes for one FIXP agent to process the received
packet and transmit it to its destination. For example, one of the processing
delays of the PL encompasses the time that the FIXP Rule Handler Service
takes to set its FIXP SW and generate the FIXP Acknowledgment Packet.
Bellow, there is a list of the considered delays to trace a FIXP delay profile:

• Propagation Delay between the PL and AL: This metric focuses on
the propagation time for one packet from the Physical Layer to the
Abstraction Layer and vice-versa. As the scenarios exploits virtualized
environments, this result covers the propagation between VMs.

• Propagation Delay between the AL and CL: This metric covers
the propagation time that a packet from the Abstraction Layer to the
Control Layer and vice-versa. As the scenarios exploits virtualized
environments, this result covers the propagation between VMs.

• Processing Time per FIXP Switch: This is the average time to for-
ward a packet for a FIXPSW. Equation 5.7 outlines this metric.

FIXPProcessingT imex =
∑(ProcessingT ime)

TotalPackets
(5.7)

metrics in this work, we refer to what happens between VMs. Therefore, any delay is not
relative to the electromagnetic waves in the air or the fiber. In other words, it refers to
the processing and propagation of packets inside the O.S., VirtualBox, and processes. On
the other hand, future works can present this conventional delay by exploring P4-enabled
forwarding devices, as from Edgecore, NetFPGA, and SUME.
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• Processing Time per Scenario: This metric encompass the average
processing time per scenario. Equation 5.8 highlights this metric.

FIXPProcessingT imeScenario =
∑(ProcessingT imex)

TotalFIXPSW
(5.8)

• FIXP Abstraction Layer Processing Time: This metric comprises
the processing time that the FCPH or FSPH takes to forward a packet
either to FIXP DP or Control Layer.

• FIXP Table-Add Delay: This metric comprises the delay that a FIXP
Table-Add Modify primitive takes to set a FIXP SW and receive its Ack.

5.4.3 Data Assessment Methodology

A Python script automates the data assessment. Beforehand, the user
must convert Wireshark logs as JSON for each experiment. In other words,
the user must select every network interface for each distinct VM in FIXP
environment . As a convention, the name structure follows: ”<Day of
Experiment>-<Type of Experiment>-<VM name>.json.´´

After assembling this crucial data in a single directory, the ”sumPack-
ets.py´´ script analyzes the collected data. The box below outlines the com-
mand to execute this, taking the folder directory as an input:

python3 ./sumPackets.py <Wireshark logs directory>

This software summarizes every distinct log into a single spreadsheet
file with the extension ”.xlsx´´ that contains eight sheets. These sheets
represent each aspect of the FIXP packet flow and results, namely:

• Filtered Packets: It outlines every packet chronologically, consider-
ing every VM and the FIXP and NG architectures.

• Filtered Table Adds: This sheet filters the FIXP control packets by
their flow from the NGCA, organizing them by their SeqID.

• Filtered Acks: This sheet summarizes the FIXP packets, considering
their flow from the PL to the controllers, organizing them by SeqID.

• Filtered Reinsertion: This sheet compiles the FIXP reinsertion pack-
ets, gathering only the FIXP Reinsertion packets.

• Table Add-Modify Primitive: This sheet sums up the FIXP Table
Add-Modify Primitive, organizing them by their SeqID.

• Reinsertion Primitive: This sheet arranges the FIXP Acknowledge
and FIXP Reinsertion packets, organizing them by their SeqIDs.

• Architectures and Reinsertion Packets: This sheet organizes the
FIXP Reinsertion primitive and the original packets from the AL to the
PL, organizing them chronologically.
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• FIXP Delay Profile: This sheet summarizes the FIXP Delay profile.

To elucidate the ”sumPackets.py´´ script, Figure 5.7 illustrates its sim-
plified flowchart. Notice that it takes the logs directory as an input to read,
filter, and summarize the FIXP Delay Profile. This script considers only the
FIXP and NG. After doing this process for every log, the algorithm calcu-
lates the considered delays based on the already explained sheets. In the
end, it generates the results spreadsheet containing the FIXP Delay Profile.

Start

Enter
the logs
directory

Read JSON File

Filter the pack-
ets and organize
them

More
logs?

Calculate FIXP
Processing &
Prop. Delays

Generate FIXP
Delay Profile
File

End

yes

no

Figure 5.7: FIXP Delays Profile Flowchart.
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5.4.4 Host Machine Evaluation Methodology

Another investigation concerns the host performance to virtualize the
network environment. For these results, a bash script oversees the CPU
and memory usage over the varied network topologies. Algorithm 3 high-
lights the infinite loop to measure the CPU and memory usage from the host
machine and store these data into a text file every 10 seconds. Notice that
top is a Linux command that summarizes the real-time information from the
running processes and free relates to the memory usage.

Algorithm 3 CPU Usage Algorithm

1: while True do
2: CPU = ‘top -bn 2 | grep ’Cpu(s)’ | tail -n 1 |awk ’print $2+$4+$6’‘
3: MEMORY = free -t | awk ’NR == 2 print 3/2*100’
4: Stores CPU and Memory variable into text file
5: Sleep for 10 seconds

In addition, Zabbix retrieves the network throughtput graphically. Through
this software, it is possible to observe the incoming and outgoing data in a
network link/network interface. For the FIXP scenarios, the graphs present
the FIXP Data Plane and FIXP Control Plane throughput considering the
network traffic between VMs on VirtualBox’s virtual networks.

5.5 Functional Evaluation Methodology

Increasing the complexity of the AS, a multi-path between the NG hosts is
proposed in Figure 5.8. The goal is to observe how NGCA behaves with the
current solution in a more complex environment, wherein it might lead to a
non-optimal path between the NG hosts. This last case is just for curiosity’s
sake, evaluating the NG Control Agent performance in a mesh network.

5.6 Computational Resources

Throughout the experiments, we have selected the available ICT Lab
server as the Host Machine. This server virtualizes the proposed FIXP net-
work topologies. Table 5.2 briefs the Host Machine hardware.

Table 5.2: Host Computational Resources.

Role Description CPU Hard Disk RAM Memory

Host
Dell Power-
Edge 7640

2x 2.2GHz Intel R Xeon
TM Silver 4114 32
Core

2x SSD SATA 480GB 6
Gbps; 3x HDD SATA
4TB, 7.2K RPM

256GB (8x32GB)
RDIMM DDR4 2667
MT/s

VirtualBox provides the required virtualization tools to conceive an em-
ulated network topology with VMs and virtual networks. Considering NG
and FIXP resources, Table 5.3 outlines the computational settings:
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Figure 5.8: FIXP Evaluation with a multi-path between NG hosts.

Table 5.3: Virtual Machines Computational Resources.

Role CPU Hard Disk
RAM
Memory

NG Hosts
3 cores of the 2.2GHz Intel
Xeon Silver 4114 processor

10GB 32GB

FIXP Switches
3 cores of the 2.2GHz Intel
Xeon Silver 4114 processor

20GB 32GB

FIXP Abstraction Layer
3 cores of the 2.2GHz Intel
Xeon Silver 4114 processor

10GB 32GB

NG Control Agent
3 cores of the 2.2GHz Intel
Xeon Silver 4114 processor

10GB 32GB

5.7 Closing Remarks

The presented methodology combines custom software and existing frame-
works to evaluate the FIXP, NG, and host performance over the proposed
virtualized network topologies. In this way, this assessment provides a
broader panorama of how NG behaves on a virtualized environment ex-
ploiting FIXP as an exchange point. As we are handling a data analysis of
a massive database of Wireshark and NG network logs, the automation of
this process through Python scripts is crucial to filter, process, and present
the results. For example, the Wireshark network logs have files with more
than 1GB of size. As the network topology grows, it becomes unbearable
for a human to examine this massive database handly and promptly.

At first, the FIXP scalability is investigated as the virtualized network
topology grows. Nevertheless, this is just a partial analysis once a definitive
conclusion requires a much more substantial environment. Secondly, the
NG analysis contemplates the overhead impact on the ContentApp scenario.
Upon comparing virtualized network topologies that present the NG hosts
connect through and without FIXP, we can contrast both scenarios. Finally,
the influence of such tests is analyzed in the host.
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Results

G IVEN the proposed methodology, it exploits a virtualized network topol-
ogy to evaluate FIXP. Therefore, this chapter the obtained perfor-

mance and functional results, analyzing the findings.

6.1 Performance Evaluation

This sub-chapter presents the obtained performance results from NG,
FIXP, and the Host machine. Every graph but Zabbix’s represents an aver-
age of 10 samplings, summarizing around 1GB of data for each plot.

6.1.1 NG Performance

Focusing on the NG performance, the first results encompass the Pub
RTT from the NG Source to the NG Network Cache and the Sub RTT from
the NG Network Cachee to the NG Repository. As seen in Figures 6.1-a)
and 6.1-b), the FIXP impact is minimal from the application point of view.
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Figure 6.1: NG Performance Evaluation considering: a) Pub RTT and b) Sub RTT.

Considering the Standard Scenario, i.e. without FIXP, NG experiences a
161 ± 7.988 [ms] for publishing and 246.11 ± 10.93 for subscribing photos of

107
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780B. Meanwhile, the publishing values are 173.25± 8.14, 184.24± 8.13, and
190.26 ± 7.87 [ms] for 1, 3, and 5 FIXP Switches, respectively. On the other
hand, these same values with a fragmentation scenario are 126.12 ± 8.959,
143.46 ± 9.02, 165.41 ± 9.31, and 174.27 ± 9.147 [ms]. Notice that the RTTs
have almost a linear behavior as the FIXP Data Plane increases its number
of FIXP switches. Surprisingly, the Sub RTTs presents a bigger variation
when we compare the subscribing of 780B and 10KB photos and largest
RTT values for subscribing 780B. This trend might be due to the choice
of applying three separated NG services (PSS, HTS, and GIRS) to create
the NG Network Cache. Therefore, NG intra-communication process may
not be optimized. Moreover, these results might reveal that the ContentApp
settings (Table 5.1) are not the best as we thought. Meanwhile, VirtualBox’s
processes and virtual networks can also impact these values once it exploits
its hypervisor to manage the communication between VMs.

Figures 6.2, 6.3, and 6.4 illustrate the NG hosts throughput for the sce-
nario with photos of 780B. NG has a gradual increase of traffic while ex-
posing, discovering, and establishing a contract with the NG peers. After
this, NG Source starts to send the photo content, increasing the throughput
until a peak. This value decreases over time until the moment when NG
Source publishes all of its content to the NG Network Cache. The remain-
ing network traffic derives from the periodic NG messages, like NG Hello.
For photos with 10kB, the throughput follows the same pattern.

Figure 6.2: NG Source Throughput with photos of 780B.

Figure 6.3: NG Repository Throughput with photos of 780B.
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Figure 6.4: NG Cache Throughput with photos of 780B.

6.1.2 FIXP Switches

Considering the FIXP DP performance, Figure 6.5-a) outlines the average
of FIXP Switch Processing Time per scenario. This graph summarizes the
amount of time required to forward an NG considering the whole FIXP DP.
This means that the x-axis represents the total number of FIXP Switches at
the FIXP DP. Apparently, the scenario with photos of 780B performs worse
than 10kB in any case. Moreover, the outcomes decrease over the increase
of FIXP Switches, which may indicate a poor sampling for the smaller cases
once the greatest scenario has more data.
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Figure 6.5: FIXP Switch Processing Time considering: a) Average per Scenario
and b) Average per FIXP Switch.

Figure 6.5-b) contrasts the average FIXP Processing Time per FIXP Switch.
This graph outlines the expected overhead inserted by each forwarding ele-
ment at FIXP Data Plane, once it groups every network log per FIXP Switch,
generating an x-axis that represents each FIXP Switch at FIXP DP. Oppos-
ing the last graph, this result points that in most cases the 780B photos
performance is better than 10KB. This is because this scenario without frag-
ment does not require to read the hash function to retrieve the DHID based
on each NG message MsgID. Therefore, FIXP Switches forward this type of
packet directly. Every FIXP Switch but FIXP Switch 3 presents a delay of
less than 10 [ms]. Nevertheless, FIXP Switch 3 presents a higher overhead
and shows that the 780B photo forwarding performs worse than 10KB. This
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might explain why the last graph was biased towards the smaller content.
As this forwarding element is at the center of the network in every sce-
nario, connecting three NG hosts and FIXP Control Plane, this might be a
network bottleneck. As the network traffic is substantial in this forward-
ing element, the current solution may burden its forwarding. As pointed in
p4language Github issues [110–112], several factors impact the expected
BMv2 throughput. As the current solution presents the JSON source code
and VMs to conceive the network topology, this justifies how FIXP 3 strug-
gles with higher network traffic than the others.

Figure 6.6 covers the required time that FRHS needs to translate the
FIXP Table Add primitive to a BMv2 standard, set the NG Routing Table, and
generate a FIXP Ack primitive. The first Figure 6.6-a) presents the average
per scenario, while Figure 6.6-b) outlines the individual performance per
forwarding element. Both results highlights an almost constant overhead
regardless of the network topology size.
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Figure 6.6: FIXP Rule Handler Service overhead to insert a new rule considering:
a) Average per Scenario and b) Average per FIXP Switch.

Figures 6.7, 6.8, and 6.9 presents the throughput on FIXP 1. Meanwhile,
Figures 6.10, 6.11, 6.12, and 6.13 highlights the FIXP 3 throughput. As ex-
pected, FIXP Switch 3 receives/forwards more data than any other device.
Focusing at FIXP Data Plane, FIXP Switch 1 receives/forwards an average
of 29.74/11.58 [kbps] to/from NG Source and 11.59/29.42 [kbps] to/from
FIXP Switch 2. At its turn, FIXP Switch receives/forwards an average of
29.35/11.65 [kbps] to/from FIXP Switch 2, 11.5/33.05 [kbps] to/from FIXP
Switch 4, and 38.2/35.5 [kbps] to/from NG Cache. Nonetheless, these val-
ues should not stress the forwarding device.

6.1.3 FIXP Abstraction Layer

Analyzing the FIXP Abstraction Layer, Figure 6.14 highlights the ex-
pected time to forward a FIXP Data Plane packet to the FIXP Control Plane
and vice versa upon varying the underlying network topology. As the num-
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Figure 6.7: FIXP Switch 1 Throughput from/to NG Source with photos of 780B.

Figure 6.8: FIXP Switch 1 Throughput from/to FIXP 2 with photos of 780B.

Figure 6.9: FIXP Switch 1 throughput from/to FIXP Control Plane.

Figure 6.10: FIXP Switch 3 Throughput from/to FIXP Switch 2 with photos of 780B.

Figure 6.11: FIXP Switch 3 Throughput from/to FIXP Switch 4 with photos of 780B.
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Figure 6.12: FIXP Switch 3 Throughput from/to NG Cache with photos of 780B.

Figure 6.13: FIXP3 Throughput from/to FIXP Control Plane with photos of 780B.

ber of FIXP Switches increases on the FIXP Data Plane (and so the manage-
ment traffic), the overhead in this layer also intensifies. This is probably due
to the single thread solution of forwarding packets between the FIXP layers.
Nonetheless, this raise seems linear over the scenarios and only impacts
during the FIXP Data Plane setting. A possible solution can be a multi-
thread algorithm with a buffer to mitigate this possible bottleneck in the
FIXP Abstraction Layer. Considering the average for every sampled packet
for the 780B and 10KB scenarios, the expected time to forward a packet
between the FIXP Data Plane and FIXP Control Layer are 129.9568± 0.78254
and 163.0163 ± 1.5557 [ms], respectively. Unsurprisingly, these values does
not change significantly because they present the same PGCS MTU limit.
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Figure 6.14: FIXP Abstraction Layer Processing Time.

Figure 6.15 presents the throughput from/to the FIXP Switch 3, while
Figure 6.16 outlines the throughput from/to NGCA. It is important to high-
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light that management data from NGCA accounts for an incoming/outgoing
average of 46 / 7440 [bps], while FIXP Switch 3 is 1510 / 9.6 [bps]. More-
over, the number of unknown packets to the FIXP Control Plane decreases
over time, as the FIXP Data Plane is set. The remaining traffic only encom-
passes the NG Hellos that are multicasted to the known peers.

Figure 6.15: FIXP Abstraction Layer Throughput from/to FIXP Switch 3 with pho-
tos of 780B.

Figure 6.16: FIXP Abstraction Layer Throughput from/to NG Controller with pho-
tos of 780B.

6.1.4 NGCA

Finally, Figure 6.17 depicts the required time to insert a new forwarding
rule at the FIXP Data Plane and receive its acknowledgment from FRHS.
Essentially, the average NG Controller Table Add values do not change
significantly as the underlying topology increases and require more primi-
tives to set it. For example, it takes 555.104 ± 114.06, 469.906 ± 51.697, and
588.981 ± 50.517 [ms] to insert one rule and receive its Ack from the FIXP
Data Plane with one, three, and five FIXP Switches on average. Just as a
matter of curiosity, the total of rules are 3, 9, and 15, respectively.

Figure 6.18 depicts the network throughput at the FIXP Control Plane.
There is a 2.91 [kbps] of average incoming traffic and 46.4 [bps] of outgoing
traffic. Once again, it follows the same trend seen before. As the underlying
network is set, the requesting packets decrease over time. The remaining
data represents the multicasted NG Hellos.

Concerning the Reinsertion Primitive, it has not been observed once
NGCA only has received NG Hellos to set the underlying FIXP Data Plane.
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Figure 6.17: NGCA Table Add.

Figure 6.18: NG Controller Throughput from/to FIXP Abstraction Layer with pho-
tos of 780B.

Therefore, it has not stored in its queue essential data packets to reinsert.
NGCA discards the received NG Hello packets because they have had al-
ready been multicasted by the FIXP Switches.

6.1.5 Host

At last, this sub-chapter presents the obtained performance related to
the Host Machine. Figure 6.19-a) outlines the CPU Usage variation over
the increase of FIXP Switches, while Figure 6.19-b) the Memory Usage over
the same conditions. As highlighted in these figures, the required computa-
tional resources do not change significantly over the proposed topologies.
Nonetheless, the bottleneck lies in the virtualization technique through
VMs that is not optimal. For each VM, at least three cores of the processor
and 10GB of Hard Disk were reserved from the host machine, which might
restrain more substantial topologies for future works.

6.2 Functional Evaluation

There are no graphics to shorten this analysis. Even though NGCA es-
tablishes the communication between the peers in a multi-path network
topology, the current design does not set the best path to connect the NG
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Figure 6.19: Host Performance concerning: a) CPU Usage and b) Memory Usage.

hosts every time. These results point that NGCA still requires more intel-
ligence and probably a upper layer for future Internet routing algorithms
with network applications to manage the controller’s knowledge over time.

6.3 Concluding Remarks

This chapter has presented the obtained results for the NGCA proto-
type. As seen, the FIXP impact is minimal for the NG application point
of view. Considering the overhead experienced by the application, the in-
crease seems linear and in the order of 10 ms. This inserted delay is accept-
able for photo exchange. Nonetheless, the current solution of virtualizing
the network topology can be a bottleneck that restrains the P4 full potential,
in terms of applying BMv2 and VMs.

Even though it fulfills its premise, NGCA requires further intelligence
to retrieve the best path for multi-path topologies. Nevertheless, this does
not burden the present work since the premise was to develop a bottom-
up controller. In other words, this native solution can become flexible
enough to encompass higher intelligence from a FIXP Network Applica-
tion Plane, which might focus on managing the underlying FIXP SDN Con-
trollers knowledge over time. Furthermore, NGCA can accommodate other
SDN technologies. This might even lead to the management of network
topologies with heterogeneous routing and SDN technologies.

Unfortunately, the complete delay profile could not be presented due to
the synchronization precision between VMs. As the current solution has a
clock synchronization precision of up to 1 [ms], this fact has compromised
the measurements that involved the propagation delays between VMs.

Another fact that narrows the overall topology and FIXP scalability anal-
ysis is the current VirtualBox hypervisor. This hypervisor limits the total
number of network interfaces connected on each Virtual Machine (VM) to
eight. Moreover, it also presents some issues with the conflict of resources
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in OSs that has VMware. Taking everything into account, this VM virtual-
ization technique also narrows the full potential of FIXP to create a more
substantial network topology. Although it might not strain the CPU and
memory usage, it consumes a meaningful amount of hard disk storage and
it is not so handy as docker containers to be automated.

Contrasting the proposed solution with the related works in Chapter 3,
we can notice that NGCA can be the first native FIA SDN controller for a
FIXP. Most of the covered works present an external and top-down con-
troller to address their proposal. In other words, these controllers are spe-
cific for their application alone, while NGCA is scalable for any NG use
case that exploits the Ethernet legacy link layer. Nevertheless, NGCA is
not bound to Ethernet alone once PGCS can translate any other link-layer
technology so this controller can manage a P4 forwarding element modeled
with another protocol header. Meanwhile, this new stack must comply with
the proposed design choices (4 reserved bytes in NG adaptation layer, a
Data Plane that fills these bytes with meaningful data for the NGCA, and a
middleware that follows the FIXP primitives).

In addition, it is challenging to present a fair comparison between NGCA
and FIXP with the related works. First, they are not open-source propos-
als and it compromises a qualitative analysis. Second, most works are not
compatible with our solution, exploiting different SDN technologies and
custom software than P4. For instance, [89] does not clarify their archi-
tecture and [91, 93] apply a JAVA framework in their projects. Consider-
ing P4 proposals, Feng et al. [83] investigate the interoperation between
ICN and HTTP through a custom proxy to translate these protocols, an-
alyzing the transmission efficiency and redundant traffic. Signorello et
al. [84] replicate NDN forwarding structure and validate their proposal with
two native NDN applications, yet there are no qualitative results. Karrak-
chou et al. [85] focus on NDN architecture and evaluate their scheme with
two different network topologies, supervising their latency and throughput.
Gimenez et al. [86] propose an internal P4 router for RINA and investigate
its throughput and packet loss over a Mininet simulation and Amazon WS
VMs. Finally, Baktir et al. [88] propose a P4 forwarding element for TCP/IP,
supervising the response load from the server.

In summary, the proposed NGCA for a NG-ready FIXP is appealing be-
cause it focuses on a native controller that is scalable for the NG architec-
ture. Considering its computational overhead, it seems competitive with
related works. Nevertheless, we still have to evaluate our proposal perfor-
mance in more substantial environments.
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Final Remarks

F INALLY, this chapter concludes this master’s thesis. Therefore, it out-
lines the main conclusion and contributions, the lessons learned, and

possible future works of this work.

7.1 Conclusions and Contributions

This work directly has presented a native NovaGenesis Controller Agent
(NGCA) for a programmable Future Internet eXchange Point (FIXP) that
supports all NG novelties, including self-organizing scheme, fragmentation,
and name-based routing. This proposal combines the trends of Future Inter-
net Architecture (FIA) with Software Defined Networks (SDN). Moreover, it
is innovative, being the first in the literature to design a native FIA SDN
controller during the writing period of this dissertation.

Taking advantage of a native NG controller to manage a programmable
Data Plane, this approach has proven to be efficient and competitive through
an evaluation methodology that contemplates performance and functional
metrics. Moreover, it has contributed to the NovaGenesis (NG) architecture
development over programmable networks.

Technologies will continue to evolve continuously and will possibly present
disjoint demands, which may not be solved by a single communication archi-
tecture, as we see today. This change is a debate for society, governments,
and companies, once the Internet has become a public utility service. The
possibility of any multi-architecture Internet must support technological
growth without restricting already established services.

7.2 Lessons Learned

Through this work, we proved the feasibility of a native Control Plane for
FIA, efficiently managing a programmable network dynamically.

117
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Furthermore, we have highlighted the relevance of softwarization, vir-
tualization, simulation, automation, and hardware programmability trends
in communication networks. By proposing this experimental research that
has started to solve a specific problem (i.e. developing a NG controller for
a FIXP with a P4-based Data Plane), some synergy with current scientific
discussions has been found. Taking into account the discussion in Chap-
ters 1 and 2, this subject is relevant for 5G and post 5G mobile network
technologies, network slicing, and multi-architecture Internet.

Finally, we also prove the relevance of the NG architecture. As much as
this architecture is about ten years old, its ingredients design a flexible com-
munication architecture project for future convergence. As seen in Chap-
ters 2 and 3, NG has novelties that are common in other FIAs proposals and
it harmoniously accommodates contemporary trends as IoT, Industry 4.0,
Software Defined Radio, and Software Defined Networks.

7.3 Future Works

During the development of this work, new opportunities for future work
emerged through the research, taking into account similar proposals in the
literature, our efforts, and new technologies. In this way, some possible
fronts for the continuity of this work are presented.

Future studies may focus on a methodology that enables the automa-
tion of more significant topologies and other demands. First, some can
explore different platforms and virtualization techniques such as contain-
ers. Second, it can exploit cloud environments and testbeds for experimen-
tation such as Future Internet Brazilian Environment for Experimentation
(FIBRE). At last, it can expand the FIXP evaluation for other network pa-
rameters such as throughput, scalability, and packet loss. In such optimized
opportunities, it can also investigate the NG performance with constant hy-
perparameters over contrasting test cases.

Taking everything into account from this dissertation, we present some
NG future research. First, some future efforts can carry out a study of al-
gorithms for Future Internet routing. Second, it can propose decentralized
knowledge using technologies such as Artificial Intelligence and Blockchain
for inter-domain communication. Lastly, it can consider expanding NG Con-
trol Agent to manage heterogeneous networks with disjoint and comple-
mentary Software Defined Networks technologies besides from P4.

—- That’s all folks
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Appendix I

NG Flow

Figure I.1 outlines a simplified flowchart between NovaGenesis (NG)
processes that enables the Proxy/Gateway Controller Service (PGCS), set-
ting this service in a perennial execution of receiving and sending packets
from/through communicating sockets or shared memory. Meanwhile, this
simplified version only addresses the main C++ source codes that impact
more in this scenario. This means that there are several more instances,
classes, and interactions between other NG processes that build and collab-
orate in a fully communicating PGCS, yet they are omitted in this document.
In other words, the focus here lies only on providing the crucial points to
understand how a NG communication develops for a generic scenario.

Input Data:

First of all, it is important to highlight the main NG command line to
initialize its operation and explain its 10 parameters.

sudo PGCS_executable_path Path_to_store_logs Origin_Port
PGCS_Communicating_Role NG_Option Communication_Stack
PGCS_Communicating_Role Communicating_Interface Peer_Address MTU

a. sudo: It usually concedes root privileges to the application. As PGCS
exploits raw sockets to communicate, it is a good practice to initiate
NG with sudo.

b. PGCS_executable_path: It points to the path where PGCS applica-
tion directory is located in the host machine.

c. Path_to_store_logs: It points to the path where PGCS logs must be
stored in the host machine.

d. Origin_Port: It specifies the communication port.

e. PGCS_Communicating_Role: It specifies the role in which the PGCS
acts in the application communication in terms of domains. As a
matter of fact, this field can be either “intra-domain,” which con-
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Figure I.1: Simplified Flowchart for PGCS main processes.

siders that the communication happens inside the same domain, or
“inter-domain,” which specifies the communication between distinct
domains.

f. NG_Option: This field specifies a functional NG scenario to deploy a
given application. For example, this parameter can receive the value
of “-p,” which points to direct communication with determined peers,
or “-pc,” which indicates a direct communication with a NG defined
core service.

g. Communication_Stack: It specifies the communication protocol Stack
in which PGCS must adapt NG messages to communicate with other
hosts. Besides of “Ethernet,” this field can receive ...

h. PGCS_Communicating_Role: It specifies the role.

i. Communicating_Interface: It specifies the communicating inter-
face that PGCS manages to communicate with other peers. This can
be either a physical network interface on the host machine, i.e. physi-
cal hardware that grants access to an external communication through
cabled or wireless means, or an emulated network interface on a Vir-
tual Machine (VM).
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j. Peer_Address: It specifies the desired peer address to communicate.
For example, this parameter can receive either Layer-2, i.e. Media
Access Control (MAC) addresses, or Layer-3, i.e. Internet Protocol
(IP), values from IEEE 802.3 stack. In special cases, this field can be
omitted.

k. Maximum Transmission Unit (MTU): It specifies the maximum trans-
mission unit for each packet sent or received to/from the network.
This parameter is crucial to the NG Adaptation Layer, once it frag-
ment or remount packets of a given NG based on this value. This is
an integer value that conveys the maximum protocol communicating
packet size or the desired packet length.

For example, someone can initialize NG with the following command line:

sudo ./PGCS ./ 0 Intra_Domain -p Ethernet Intra_Domain eth0
AB:BC:CD:EF:GH:HI 1500

This command line sets a direct Ethernet intra-domain communication
with a peer that has the AB:BC:CD:EF:GH:HI Mac Address, transmitting
packets with up to 1500 bytes of MTU.

After executing this command line, the PGCS begins to initiate a desired
scenario.

execPGCS.cpp:

execPGCS.cpp is a C++ source code that acts as a switcher, retrieving
the Input Data based on the command line that starts the NG up. This ma-
nipulates the given arguments to enable the desired application scenario,
making this data available to every required NG process.

In the given example, execPGCS.cpp selects the scenario where NG
must communicate directly with the AB:BC:CD:EF:GH:HI peer within an
intra-domain. Therefore, it must prepare other processes to create mech-
anisms that enable this case. In other words, PGCS must exchange NG
messages with an external PGCS, format the data per the Ethernet proto-
col standard, and ensure that the fragments of the packet take up to 1500
bytes in an Ethernet payload.

PGCS.cpp:

PGCS.cpp is a C++ source code that focuses on the high-level tasks of
PGCS process. In its scope, it manages the required computational threads
to deal with the Server Raw Socket (SRS) that reads incoming packets.

Moreover, it allocates blocks that accumulate Proxy/Gateway or Core
functions for network tasks.
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PG.cpp:

PG.cpp is a source code that manages the required sockets to establish
a communication, deals with processing and preparing NG messages to
several protocol stacks, and exchanges data between other NG processes
through the shared memory.

At a first moment, PG.cpp initializes the required sockets to accomplish
the selected communication in NG startup. For instance, it creates a pair of
Client Raw Socket (CRS) and a SRS to deal with incoming packets from the
Ethernet stack. At this configuration, the CRS binds to a communication
port and takes up the communication, sending the data to a peer SRS. On
the other hand, SRS commences to bind and only listen to a given port.

Besides that, it deals with the incoming packets received from the thread
that reads the NG server raw socket. As this kind of socket acquires the
packets directly from the communication interface, incorporating mecha-
nisms to manipulate its control data in every packet to determine whether
the packet belongs to a fragmented NG message, its message Identifier
(ID), and which fragment it is. For instance, the receiving function dis-
counts the Ethernet header, extracts the NG control information for its
Adaptation Layer, mounts the NG message by each NG payload received,
and feeds the intact NG message to the shared memory for other processes.

Whenever a NG message is ready to be sent to a peer, PGCS receives
this data from the shared memory or the output queue and handles it to
send through a proper communication socket. For example, PG.cpp must
ensure that the NG message fits within a packet before effectively sending
this packet through a CRS in an Ethernet frame protocol. Thus, it must
fragment this message if necessary, insert the sequence control data in the
adaptation field, and generate a message ID for each distinct NG message.
After this, the NG packet is ready to be sent through the CRS.

PGMsgCl01.cpp:

PGMsgCl01.cpp is a C++ source code that deals with incoming NG mes-
sages derived from received NG command lines. These data can come from
other NG processes from the shared memory or the output queue.

In its scope, it determines it the received NG command line is valid, if it
targets a intra- or inter- process of its hosts/domain, and how this informa-
tion shall be routed. At this moment, NG just considered software routing
mechanisms.

For example...

However, Future Internet Exchange Point (FIXP) requires a new way to
design Hardware (HW) enabled routing structure to configure a Program-
ming Protocol-Independent Packet Processors (P4) modeled switch.



Appendix II

Setting the VirtualBox
Environment

This appendix serves as a guide to prepare the virtual machines for FIXP
operation in the VirtualBox virtualized environment with NovaGenesis ar-
chitecture.

II.1 NovaGenesis Hosts

To use NovaGenesis applications, you must obtain an image of the Ubuntu
16.04 operating system, either server or desktop. For this work, we have
opted for the server distribution as it is compacter. The next steps guide
this setting:

a. Obtain Linux Ubuntu 16.04 Server;

b. Import the O.S. into VirtualBox and perform the necessary settings to
install it;

c. After completing the Linux Ubuntu 16.04 Server installation, start the
virtual machine and install all the necessary NovaGenesis architecture
dependencies;

d. To use FIXP as presented, Linux Ubuntu must be prepared to ac-
cept interface names other than the default. Therefore, modify the
GRUB_CMDLINE_LINUX line in the /etc/default/grub file as fol-
lows:

GRUB_CMDLINE_LINUX="net.ifnames=0 biosdevname=0"

e. Shut the Virtual Machine down.

5
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II.2 FIXP Switch

Regarding the FIXP Switches, Ubuntu Linux version 16.04 Server distri-
bution is recommended. After obtaining such an image, perform the follow-
ing steps:

a. Import the O.S. into VirtualBox and perform the necessary settings to
install it;

b. For these Virtual Machines, it is required to prepare it with the P4
language, the P4 compiler, the Behavioral Model version 2, and all its
dependencies. To summarize these steps, see the tutorial available on
the website:

https://p4.org/p4/getting-started-with-p4.html

c. Install Python 3.8.2 and Scapy 2.2.0 dependencies;

d. To use FIXP as presented, Linux Ubuntu must be prepared to ac-
cept interface names other than the default. Therefore, modify the
GRUB_CMDLINE_LINUX line in the /etc/default/grub file as fol-
lows:

GRUB_CMDLINE_LINUX="net.ifnames=0 biosdevname=0"

e. Shut the Virtual Machine down.

II.3 FIXP Abstraction Layer

Regarding the FIXP Abstraction Layer, Ubuntu Linux version 16.04 Server
distribution is recommended. After obtaining such an image, perform the
following steps:

a. Import the O.S. into VirtualBox and perform the necessary settings to
install it;

b. Install Python 3.8.2 and Scapy 2.2.0 dependencies;

c. To use FIXP as presented, Linux Ubuntu must be prepared to ac-
cept interface names other than the default. Therefore, modify the
GRUB_CMDLINE_LINUX line in the /etc/default/grub file as fol-
lows:

GRUB_CMDLINE_LINUX="net.ifnames=0 biosdevname=0"

d. Shut the Virtual Machine down.
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II.4 NovaGenesis Control Agent

Finally, Ubuntu Linux version 16.04 Server distribution is recommended
for the NovaGenesis Control Agent. After obtaining such an image, perform
the following steps:

a. Obtain Linux Ubuntu 16.04 Server;

b. Import the O.S. into VirtualBox and perform the necessary settings to
install it;

c. After completing the Linux Ubuntu 16.04 Server installation, start the
virtual machine and install all the necessary NovaGenesis architecture
dependencies;

d. To use FIXP as presented, Linux Ubuntu must be prepared to ac-
cept interface names other than the default. Therefore, modify the
GRUB_CMDLINE_LINUX line in the /etc/default/grub file as fol-
lows:

GRUB_CMDLINE_LINUX="net.ifnames=0 biosdevname=0"

e. Shut the Virtual Machine down.

II.5 Virtual Machines Interconnection and Net-

work Setting

The VirtualBox’s Virtual machines must be interconnected through vir-
tual networks. To explain this step, Figure II.1 presents a standard topol-
ogy that contains 1 NovaGenesis Control Agent, 1 FIXP Abstraction Layer,
1 FIXP Switch, and 2 NovaGenesis hosts. Notice the Network Interface
Controllers (NICs) shown in the drawing. They are required for the config-
uration of the VirtualBox hypervisor.

Each network interface is in VirtualBox’s promiscuous mode. In the host
machine, run the following commands in the terminal to set each Virtual
Machine for the FIXP environement:

Internal Networks:
vboxmamage modifyvm <vm> -nic<1-8> intnet_x
vboxmanage modifyvm <vm> –nicpromisc<1-8> allow_all
Bridge Adapters:
vboxmamage modifyvm <vm> -nic<1-8> bridged
vboxmamage modifyvm <vm> –bridgeadapter<1-N> <bridge name>
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Figure II.1: Standard Network Topology.



Appendix III

Network Topology

III.1 Network Topology for 5 FIXP SWes

This section exposes the VirtualBox virtual networks. Table III.1 de-
scribes the virtual networks, while Figure III.1 illustrates these connections
between VMs.

Table III.1: FIXP Virtual Network Topology.

Index Internal Network Network Address Description

1 intnet_4 192.168.191.0/24
NG Source to FIXP SW 1.

2 intnet_1 192.168.181.0/24
NG Cache to FIXP 3.

3 intnet_13 192.168.151.0/24
NG Repo to FIXP 5.

4 intnet_6 192.168.211.0/24
FIXP 1 to FIXP 2.

5 intnet_11 192.168.121.0/24
FIXP 2 to FIXP 3.

6 intnet_12 192.168.131.0/24
FIXP 3 to FIXP 4.

7 intnet_7 192.168.221.0/24
FIXP 4 to FIXP 5.

8 intnet_3 192.168.231.0/24
FIXP 1 to Interface.

9 intnet_10 192.168.241.0/24
FIXP 2 to Interface.

10 intnet_8 192.168.111.0/24
FIXP 3 to Interface.

11 intnet_2 192.168.141.0/24
FIXP 4 to Interface.

12 intnet_5 192.168.201.0/24
FIXP 5 to Interface.

13 intnet_9 192.168.251.0/24
Interface to NG Controller.

9
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