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Resumo

Souza, P. H. C. Sensoriamento Comprimido e Aprendizado Profundo para Baixa Complexi-
dade na Detecção de Sinais em Sistemas de Comunicação [tese de doutorado]. Santa Rita do
Sapucaí: Instituto Nacional de Telecomunicações; 2022.

Os requisitos da nova geração de comunicações móveis, aliados à conectividade massiva
de dispositivos, estabelecem cenários heterogêneos e complexos. Nesses cenários, modelos
clássicos se tornam limitados em sua aplicabilidade, principalmente devido à dificuldade de
tratamento dos respectivos modelos matemáticos. Além disso, ainda que a solução ótima esteja
disponível, pode ser que sua complexidade computacional seja proibitiva na prática. Portanto,
maneiras alternativas de abordar esses cenários são necessárias, uma delas sendo os algoritmos
de aprendizado de máquina (machine learning, ML) e as redes neurais (neural networks, NNs).
Usar o potencial das NNs para resolver problemas genéricos de otimização, por exemplo, pos-
sui um apelo interessante em tais cenários heterogêneos. Por outro lado, o sensoriamento
comprimido (compressed sensing, CS) foi proposto a fim de reduzir os requisitos de armazena-
mento e consumo energético de dispositivos, por meio da compressão de sinais via simples
transformações lineares. Embora sinais comprimidos possam ser perfeitamente recuperados, a
complexidade do processo de reconstrução é alta. No entanto, existem aplicações onde sinais
comprimidos são processados diretamente no domínio comprimido, ou seja, sem o processo
de reconstrução, sendo o sensoriamento espectral um exemplo. Isso motivou a definição de
um conceito emergente, denominado de aprendizado comprimido (compressed learning, CL),
que por sua vez lança mão de algoritmos ML para extrair informações relevantes de sinais
comprimidos.

As contribuições deste trabalho se dividem em duas linhas mestras: (i) o conceito de CL
é investigado no contexto do sensoriamento espectral para rádio cognitivos (cognitive radios,
CRs), onde é proposto um detector baseado em NNs para a identificação de canais vagos a par-
tir do sinal comprimido. Foi considerado tanto o caso ideal quanto aquele em que a estimação
do canal pelo receptor e as amostras do dataset usado pela NN são imperfeitas. Para isso, im-
perfeições na estimação dos coeficientes do canal (channel state information, CSI), diferentes
perfis de atraso e distribuições diversas para o canal foram simulados computacionalmente; (ii)
é proposta também uma arquitetura para NNs profundas no contexto de sistemas multiple-input
multiple-output (MIMO), empregando o conceito denominado de deep unfolding. Demonstra-
se que o detector proposto baseado nesse conceito é consideravelmente menos complexo, ainda
que não apresente perdas notáveis no desempenho. Além disso, é proposto um detector MIMO
aprimorado pela técnica de lattice reduction (LR), que apresenta ordem de diversidade similar
ao do detector ótimo e, ao mesmo tempo, menor complexidade computacional.

Palavras-chave: aprendizado de máquina; redes neurais; sistemas de comunicação; sensoria-
mento comprimido; detecção de sinais; baixa complexidade.
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Summary

Souza, P. H. C. Compressed Sensing and Deep Learning for Low-complexity Signal Detec-
tion in Communication Systems [doctoral thesis]. Santa Rita do Sapucaí: National Institute of
Telecommunications; 2022.

The requirements involved in the new generation of mobile communications, combined
with massive device connectivity, create complex heterogeneous scenarios. In these scenar-
ios, classical models become limited, primarily due to the difficulty of modeling intractable
mathematical relationships. Moreover, even if the optimum solution is available, it can be
that its computational complexity is prohibitive in practice. Therefore, alternative ways of ap-
proaching these scenarios are desired, one promising approach being machine learning (ML)
algorithms and neural networks (NNs). Harnessing NNs’ power for solving general optimiza-
tion problems, for example, has an interesting appeal in such heterogeneous scenarios. On the
other hand, compressed sensing was proposed as a technique to save storage and energy by
compressing signals using simple linear transformations. Although compressed signals can be
perfectly recovered, the complexity of the reconstruction operation is high. However, there
are applications where compressive signals are processed directly in the compressed domain,
with spectrum sensing being an example. This gave rise to an emerging concept, denoted as
compressed learning (CL), that uses ML algorithms to extract information from compressed
signals.

This work contribution is two pronged: (i) we investigate the CL concept applied to spec-
trum sensing for cognitive radios, where we propose a detector based on NNs to identify va-
cant channels from the compressed signal. For this, we assume perfect and imperfect channel
state information and also dataset samples mismatch, where channel delay profile and statis-
tics mismatches are considered; (ii) we moreover propose an architecture for deep NNs for
multiple-input multiple-output (MIMO) systems, using the so-called deep unfolding concept.
It is demonstrated that the proposed deep unfolding detector is orders-of-magnitude less com-
plex, yet presenting no severe penalties in performance. Additionally, we propose a lattice
reduction aided detector scheme for MIMO systems that achieves a similar diversity order to
that of the optimum detector but also with significant less computational complexity.

Keywords: machine learning; neural networks; communication systems; signal detection;
compressed sensing; low-complexity; deep unfolding; dataset mismatch; probability data as-
sociation; lattice reduction.
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Chapter 1

Introduction

1.1 Context

Global device connectivity is expected to drastically increase for the coming years. Estimations

predict that, by 2023, over 70% of the global population will have mobile connectivity and

internet of things (IoT) services will be responsible for half of the global connected devices

[2]. This poses an unprecedented challenge to the development of communication systems,

specially due to stringent requirements for bandwidth and energy consumption of these devices.

IoT applications based on massive machine-type communications (mMTC) [3] scenario

for the fifth generation of mobile network (5G) are already dealing with a large amount of

information collected from sensors and mobile devices. These data are employed to identify

patterns, predict systems behaviors, and support decision making processes. The massive col-

lection of data from the environment can also be used to increase the capacity of the mobile

network.

Therefore, novel applications that require efficient processing of data are on the rise. Con-

sider, for example, bioeletric signals [4], and how compressed sensing (CS) can be used to save

energy resources of sensors that have stringent power restrictions [5]. Specially when taking

into consideration that bioeletric signals are also becoming relevant in the context of the sixth

generation of mobile network (6G) systems [6,7]. Although several other applications could be

mentioned, we deepen into the discussion of how cognitive radio (CR) applications may benefit

from the CS technique when also considering that compressed data is processed by machine

learning (ML) algorithms, as introduced in the following.

One interesting application is the dynamic and opportunistic exploitation of vacant chan-

nels as secondary network. Although the allocation of the radio frequency (RF) spectrum
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below 6 GHz is very congested, it is not yet utilized to its full potential [8, 9]. To address

the spectrum scarcity problem, the CR [10] was proposed and spectrum sensing (SS) has been

identified as a key feature of this dynamic spectrum access approach [11]. In summary, SS is

employed to identify spectrum opportunities for transmitting data as secondary users (SUs),

while the primary users (PUs)1 do not occupy their rightful portion of the spectrum. Therefore,

an increase in spectrum efficiency is achieved. In this context, CS can be seen as a potential

candidate for reducing complexity of the signal sensing task [12]. By performing both sensing

and compression at the same time, CS can sample signals at a sub-Nyquist rate and perfectly

reconstruct them, granted that certain conditions are satisfied. The compression is carried out

by a simple linear transformation, where the signal is linearly encoded from a high dimension

to a low dimension by the sensing matrix. However, the process of reconstructing signals in

CS is costly and entails, for instance, solving a convex optimization problem. This motivated

the search for applications where compressed signals are processed directly in the compressed

domain [13], avoiding the need of signal reconstruction.

Considering the CR scenario and the SS use case, gateways can be employed to collect

measurements from SUs spread over an area where PUs operate. We assume that PUs use

listen-before-transmit algorithms to avoid collision. Moreover, note that each SU detects the

spectrum occupancy status in a given channel [14], that is, perform SS, and reports this infor-

mation to such gateways using a robust physical layer (PHY) protocol, resulting in neglectable

error. To be more specific, consider that the gateway placed physically close to SUs, collects

measurements from N sensors and uses a sequence of M < N samples to represent all spec-

trum occupancy patterns, that is, which is the active PU in a given time-window. Therefore,

we use CS for compressing this information, thus reducing the dimension of measurements

and consequently alleviating processing and storage requirements at the gateway. A common

situation is that the gateway does not have the processing power or all necessary information

(i.e., access to the geolocation database [15]) to perform the final decision upon the status of

spectrum occupancy. This means that measurements often need to be transmitted to a fusion

center (FC) that has these processing capabilities and all necessary data for defining the spec-

trum occupancy in a given area. Finally, the detection can be performed without reconstructing

the signal, since only low dimension features must be extracted from the compressed measure-

ments.

1.2 Compressed Signals Detection and Learning

The performance loss incurred when detecting compressed signals is a well understood effect

for model-driven statistic detectors as, for example, the ones based on maximum likelihood

1PUs or incumbent users, are users that have priority of spectrum access according to regulatory
bodies’ proceedings.
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principle [13, 16, 17]. Despite yielding optimum performance, they have a high computational

complexity, demand perfect channel state information (CSI), as well as entries of the sensing

matrix used in the CS. As an alternative to model-driven detectors, data-driven detectors based

on ML algorithms have been gathering an increasing interest from the research community

[18–26]. So far, conclusions demonstrate that data-driven detectors are remarkably useful for

scenarios where mathematical models of the system are missing or are difficult to obtain [21,

22]. It is envisioned that ML algorithms and deep learning will be one of the key enabling

technologies for the 6G [6, 27].

More specifically, compressed learning (CL) [28, ch. 10] has shown promising results in

compressed image classification. To elaborate, CL leverages ML algorithms and neural net-

works (NNs) to perform classification in the compressed domain, typically in the context of

image processing. Therefore, a natural question arises: how well CL would perform in the

context of communication systems? Beyond that, it should be considered scenarios for which

parameters of the communication channel are not perfectly known at the receiver, since it was

shown that the channel capacity is affected by imperfect channel measurements or estima-

tions [29]. This is an instance of the aforementioned scenario where there are no closed-form

expressions available for modeling the system. In addition, computation complexity should not

be neglected, since it plays an important role in energy efficiency and in the overall cost of the

network.

In [30], an end-to-end deep learning approach is employed to perform image classifica-

tion in the compressed domain. In this approach, a fully connected NN, responsible for per-

forming the transformation on the uncompressed signal, is followed by a convolutional neural

network (CNN), which makes the final inference or classification of an image. It has been

shown by the authors that CL provides an effective way to reduce complexity and storage re-

quirements without significantly compromising the classification accuracy. In [31], the authors

propose a data-driven receiver for molecular communication systems in the presence of inter-

symbol interference (ISI). The modeling of molecular communication channels are considered

to be very challenging, thus presenting itself as an interesting opportunity for receivers based

on NNs. The NN receiver was reported to be equivalent, performance-wise, to model-driven

receivers that required perfect CSI. In [32], the authors apply deep learning for symbol detec-

tion in orthogonal frequency division multiplexing (OFDM) systems. In this case, parameters

about the communication channel are estimated implicitly by the data-driven receiver. Results

unveiled that this receiver is more robust than conventional model-driven ones, performing

better in scenarios where fewer training pilots are used, the cyclic prefix (CP) is omitted and

nonlinear clipping noises exists.
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1.3 Data-driven Detectors in Practice

Indeed, algorithms based on ML and NNs consist in the majority of state-of-the-art data-driven

frameworks that are currently being proposed for communications systems [19]. Typical NNs

architectures can be viewed as a graph in which nodes (or neurons) are arranged in layers, and

all nodes of a given layer are connected with all nodes from the adjacent layers. These connec-

tions comprise the vertices of the graph, which are called weights in the context of NNs. More

specifically, NNs with few layers are the so-called deep neural networks. As mentioned earlier,

such graph-like architectures have shown great potential at solving, for example, classification

problems, where mathematical models are to no avail and, thus originally human judgment

would be necessary [33].

However, particularly in supervised training frameworks, the NN performance is highly

dependent on the dataset used in the training stage. Therefore, it is important to evaluate the

performance degradation when there is a mismatch between the statistics of the training dataset

and samples processed during the operation of the NN. The NN generalization robustness, de-

fined as the capability of the NN to achieve acceptable performance even in the presence of

this statistics mismatch, is critical for the employment of data-driven frameworks in communi-

cation systems. This is important because it is likely that the statistics of the time-varying and

frequency-selective channels in real operations conditions will not perfectly match the statistics

of the training dataset. Note that such data misalignment between the training dataset and the

actual data of the detection stage is defined throughout in this work as the training mismatch.

In summary, one of the most important performance indicators of the NN is its generalization

robustness, that is, how well it adapts to previously unseen data [21]. Moreover, it is desirable

to avoid frequent NN retraining, since this procedure is computationally costly.

Training samples mismatch are a general concern in the ML research community and re-

ceived great attention recently [34]. More specifically, the work in [35] proposes an online

training solution for channel estimation in massive multiple-input multiple-output (MIMO)

systems. According to authors of [35], the proposed NN can adapt its weights to the actual

channel propagation environment without requiring knowledge of the true channel matrix, thus

avoiding mismatches between assumed models and the actual scenario. Moreover, in [36]

transfer learning is employed to address mismatches caused by dynamic networks settings in

the context of resource management in wireless networks. Also, authors in [37] propose an

alternative data-driven signal detection method for massive MIMO, that reduces the impact of

mismatched channel correlations between training and detection.
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1.4 ML and NN for MIMO Systems

An interesting detail, however, is that works related with CS and CL frequently assume single-

input single-output (SISO) systems in their analysis. Recently, several efforts [24, 38] were

also made towards enhancing the detection of uncompressed signals in MIMO systems, by

combining ML algorithms and NNs with well-established MIMO detection techniques and

algorithms.

The purported success of MIMO systems is being confirmed since the fourth generation

of mobile network (4G) and continue to show its importance in recent deployments of 5G

technology. Early studies on the 6G also show MIMO systems as a key enabler for future

wireless systems [39]. Its advantages over classical SISO systems are extremely attractive and

relatively simple to understand from a theoretical standpoint [40,41]: by increasing the number

of service antennas, an overall increase in data throughput is obtained. More specifically, in the

most recent development of multi-antenna systems, known as massive MIMO [42], dozens of

antennas can provide huge gains in performance, simplicity in signal processing and support

for a scalable system design.

Using data-driven detectors in MIMO systems presents a new set of challenges, to such

a pass that a great number of solutions [24, 38, 43] in the recent literature still opted to rely

partly on model-driven algorithms, instead of pure data-driven based detectors. This can be

achieved by leveraging MIMO iterative detection algorithms and the so-called deep unfolded

architecture for NNs. Essentially, deep unfolded means that iterations of model-driven detec-

tion algorithms are unfolded or incorporated into the layers of a NN, thereby underlying its

architecture with operations from the model-driven algorithm. One interesting algorithm to

take into consideration is the probability data association (PDA) detector [44], since it achieves

a good trade-off between complexity and performance [41].

It was shown, for instance, that the deep unfolded NN for MIMO can improve detection

performance for practical scenarios where there is correlation between channels [43]. Addi-

tionally, deep unfolded detectors with lower computation complexity can be also obtained,

specially when the optimum maximum likelihood detector for MIMO is considered, for which

the complexity increases exponentially with the number of transmitting antennas.

Furthermore, in general, it is of interest to mitigate the inter antenna interference (IAI)

widely present in MIMO systems [41], regardless of the detection solution employed, in order

to provide an acceptable performance in terms of error probability. Basically, the lower the

orthogonality among off-diagonal channel coefficients of the MIMO channel matrix, the higher

is the IAI. To this end, the lattice reduction (LR) technique was proposed [45], which consists

of operations that improve the properties of basis functions (increase orthogonality) that form a

lattice, represented in this work by the channel matrix. This will be of use for the PDA detector,
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given that it is also impacted by the IAI and thereby unable to take advantage of all diversity

available in MIMO systems.

In light of these introductory discussions and related works, we now lay out the main

contributions of this work and its organization.

1.5 Contributions and organization

In this work we make the following main contributions:

• We propose a data-driven SISO receiver based on CL for detecting compressed OFDM

data signals embedded in noise and distorted by the channel;

• An analytical expression is provided for computing the theoretical performance of the

optimum model-driven SISO detector in the compressed domain, considering independent

identically distributed (iid) data signals;

• The performances of both data-driven and model-driven SISO detectors are compared

for practical scenarios as, for example, when CSI is not perfect;

• We evaluate the generalization robustness of the data-driven SISO receiver;

• Analysis are provided considering dataset mismatches of the channel delay profile and

channel statistics;

• We propose a novel combination of the data-driven deep unfolded detector and the PDA

algorithm for signal detection in MIMO systems;

• An enhanced PDA detector based on LR techniques is also proposed;

• We discuss the computational complexity and performance of all the aforementioned

detectors.

The remainder of this work is organized as follows. In Chapter 2 an introduction to CS is

provided, with a simple illustrative example of one of its main applications. This is followed by

Chapter 3, on the the basics of ML algorithms and NNs, which allows for the introduction of

CL concepts. Next, Chapter 4 details the system model for the data-driven SISO receiver based

on CL. Moreover, it also presents both model-driven and data-driven detectors’ computational

complexity analysis and numerical results, in order to evaluate their performance under several

practical conditions. For Chapter 5, we discuss the deep unfolded NN architecture for signal

detection in MIMO-OFDM systems, also providing the computational complexity analysis and

numerical results of its detection performance. Additionally, in this chapter a novel detector
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scheme for MIMO-OFDM systems is detailed and its performance is evaluated via numerical

results. Finally, Chapter 6 concludes this work.
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Chapter 2

Compressed Sensing

2.1 Introduction

The interest in CS is increasing due to its application in future mobile communication networks

[46]. The amount of sparse data sources in 6G is expected to grow significantly with the full

integration of sensing, positioning, mapping, imaging and communications. Therefore, CS can

reduce the amount of data to be processed in this scenario.

Detection of information in the compressed domain using ML has shown to be an efficient

approach [30]. With this in mind, throughout this chapter and Chapter 3 we present principles

involved in the CL concept by building a bridge between CS and ML algorithms which are

used for detecting the sensed information without expanding the compressed signal. In order to

achieve this goal, this chapter presents the principles of CS and Chapter 3 introduces principles

of ML separately, allowing the proper introduction of CL concepts and paving the way to

present the system model.

The compressive measurement carried out by CS can be viewed as a linear encoding of

an uncompressed signal x ∈ RN [28]. Consider the following standard finite-dimensional CS

model,

y = Ax, (2.1)

where A ∈ RM×N is the sensing matrix and y ∈ RM is the resulting compressed signal.

Therefore, M linear samples are taken and, forM ≪ N , a dimensionality reduction occurs. In

other words, a signal in a higher dimension, RN , is mapped by the sensing matrix into a lower

dimension RM . Note that we assume a non-adaptive measurement model so that entries of A

are fixed and independent of x [12, 28, 47].

The model in (2.1) is defined as an undetermined system of linear equations, since A has
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more columns than rows [12,48]. It is known, from elementary linear algebra, that such systems

have an infinite number of solutions in RN . However, signals of interest are often sparse, which

means that only a small portion of its information is relevant. This allows CS to reconstruct or

decode signals in a most efficient way and avoid the undetermined system limitation [28, 48].

2.2 Sparse Signals

To elaborate on sparse signals, consider an image ofN pixels encoded into a vector u. Because

some features like objects, textures, patterns and hues are more important, this information is

retained whereas other are discarded, reducing the size of u [12,48]. Other examples in wireless

communications include the sparse channel impulse response, the sparse detector of index

modulation [49], the sparse utilization of the spectrum in CR applications, and IoT applications

[48, 50]. More specifically, an S-sparse signal x̃ ∈ RN is defined as [28, 48]

∥x̃∥0 ≤ S, (2.2)

meaning that x̃ has at most S non-zero entries. For some scenarios, it is possible to represent

the uncompressed signal x ∈ RN by a given sparse vector. This can be achieved by applying a

basis function, that is Φ, to the sparse vector, so that ∥x−Φx̃∥2 is small [48]. Thus, Φx̃ retains

most of the relevant information of x. An example is the wavelet basis function, frequently used

in image sensing [12, 47, 48].

However, let us consider yet a simpler example where the uncompressed signal, x, is given

by a sum of in-phase sinusoidal signals, that is,

x (n) =
∑
i

Ai sin (ωin+ ψ), n ∈ {0,1, . . . ,N − 1}, (2.3)

wherein Ai is the peak amplitude of the ith sinusoidal, ωi = 2πi/ (N − 1) represents the

ith angular frequency and ψ the initial phase angle. Figure 2.1 (a) brings an excerpt of such

signal, where ψ = 0 without loss of generality and values for Ai were chosen at random with

i ∈ {1, . . . ,80}1 and N = 1023. Note that the main objective in this section is to familiarize

the reader with sparse signals, thus more details about parameters of (2.3) are discussed in

Section 2.5.

Interestingly enough, defining Φ as being the inverse discrete Fourier transform (IDFT)

matrix, means that the result of Φ−1x, that is, the discrete Fourier transform (DFT) of (2.3),

is an approximate sparse signal or a compressible signal. However, entries of a compressible

signal with small magnitudes are close to but not exactly zero. Therefore, only after applying

1Let {i | Ai = 0} (null amplitude values) be the set of randomly chosen sinusoidal tones (frequen-
cies) not included in (2.3), all of which determined by a uniformly distributed random number generator.
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Figure 2.1: (a) An excerpt of the sum of sinusoidal signals or the uncompressed signal for
N = 1023 and (b) the S-sparse signal, with S = 16.

the optimal thresholding strategy [28] that selects the S largest entries of x, we have the S-

sparse signal illustrated in Figure 2.1 (b).

It is important to remark that for this example we use the information that there are 16

sinusoidal tones in (2.3). In other words, we assume that the exact number of largest entries

to be chosen is known. Hence, x̃ is a 16-sparse signal since it has S = 16 non-zero entries

corresponding to different angular frequencies. Not knowing this beforehand might be a com-

plicating factor [12, 28] that is further discussed in Section 2.5. More importantly, note that

S ≪ N , which brings us to an additional definition of sparse signals: if the number of non-

zero entries of a given signal is sufficient smaller than its dimension, then this signal is defined

as sparse [51].

2.3 Reconstruction Algorithms

Different algorithms can be used for signal reconstruction, for example, orthogonal matching

pursuit (OMP), iterative hard thresholding (IHT), sparse bayesian learning (SBL) and several

others. The detailed description of these algorithms is out of scope of this work and more

details can be obtained in [50, 52] and in the references therein. One approach is to frame the

signal reconstruction as an optimization problem, namely the ℓ0 minimization problem [48,52],
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Figure 2.2: (a) Depiction of
(
3
1

)
= 3 planes that can be formed by x′ and x′′, (b) an example

where the solution found by ℓ2 minimization or least squares is incorrect and (c) an instance
for which the solution found by (2.5) is the correct one.

given by

minimize ∥x∥0 (2.4)

subject to Ax = y,

for which the optimum value is the so-called sparsest solution. For the sake of simplicity let

henceforth x = x̃, that is, the uncompressed signal is S-sparse itself. Note that computing the

solution of (2.4) requires that all
(
N
S

)
combinations for the support of x are tested, making (2.4)

generally non-deterministic polynomial-time hard (NP-hard) [48, 52]. Alternatively, (2.4) can

be recast as a convex optimization [53] problem as follows

minimize ∥x∥1 (2.5)

subject to Ax = y,

thus making the reconstruction problem tractable, since there are several fast solvers available

[48, 53].

Similar to (2.4), (2.5) is referred as the ℓ1 minimization or basis pursuit, and its solution is

also a solution to (2.4) if certain conditions are satisfied [52]. These conditions are detailed in

the following sections but let us first sketch a geometric perspective of the equivalence between

(2.4) and (2.5) [47, 51]. This is done only as a means to develop an intuitive sense for the

justification of this equivalence and, as such, it is not a substitute for the rigorous proof that can

be found in [52, 54].

Firstly, note that the set of all S-sparse vectors consists of
(
N
S

)
S-dimensional hyperplanes

located in RN . For example, Figure 2.2 (a) illustrates a number of
(
3
1

)
= 3 planes that can

be formed by two 1-sparse vectors in R3, say x′ and x′′. Note how these 1-sparse vectors

are both aligned with the coordinate axes. As stated before, the ℓ0 minimization of (2.4) finds

the solution via an exhaustive combinatorial search considering the set of all S-sparse vectors,

which guarantees that an exact solution is found under adequate conditions. However, by
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considering an alternative approach where the ℓ0-norm is substituted by the ℓ2-norm in (2.4),

lead us to the well-known least squares minimization. This formulation has low computational

complexity; in fact a closed-form solution can be provided: x̂ = AT (AAT)−1y. Although

this looks promising, the solution given by ℓ2 minimization or least squares is most likely not

sparse.2 Observe in Figure 2.2 (b) an instance where the N − M -dimensional hyperplane

containing all valid solutions to Ax = y overlaps the hypersphere at a point that is not lying

on the coordinate axis, meaning that the least squares solution is wrong in most cases. Using

the same idea, note in the example of Figure 2.2 (c) how the solution found by (2.5), that is,

ℓ1 minimization, is the exact one. This happens because the ℓ1-norm has a diamond shape,

more precisely defined as a cross-polytope [28, 51], whose vertex will overlap the point lying

on the coordinate axis with overwhelmingly high probability, instead of another point on the

hyperplane.

2.4 Conditions for Performance Guarantee

A question that persists is: under which conditions is it possible to recover unambiguously a

S-sparse vector? Consequently, it is of interest to define how the uniqueness of the S-sparse

solution could be ensured. Although the geometric perspective given in Section 2.3 showed

how recovery algorithms based on convex optimization reach the solution, still other CS pa-

rameters are yet to be defined. These are, for example, the number of measurements, M , and

the structure of the sensing matrix A. In what follows, a notion for the uniqueness of S-sparse

solutions is given, which is then used to establish the relationship between CS parameters and

the recovery performance.

To begin, recall that N ≥ M and let A have rank(A) = M , which means that a subset of

M columns of A are linearly independent. Moreover, assume that at least M + 1 columns of

A are linearly dependent. These assumptions are not a requirement but it is done here for the

sake of simplicity. The interested reader can refer to [28, 51, 52] for a generalized treatment.

We must ensure that the desired S-sparse solution, say x̂1 = x, is unique and this means

that no other S-sparse vector, denoted by x̂2 ̸= x, should be taken as a solution, consequently

making x̂1 ̸= x̂2. Let also û = x̂1 − x̂2, in which case û is a 2S-sparse vector, since the

support of x̂1 and x̂2 are assumed to be completely different in the general case.3 Therefore,

if 2S ≥ M + 1, then Ax̂1 = Ax̂2, given that a subset of 2S linearly dependent columns can

be combined such that A(x̂1 − x̂2) = 0. This renders the distinction of the desired S-sparse

solution impossible, regardless of the algorithm used for reconstruction. However, if and only

2This holds when entries of A are iid Gaussian, for example. Sensing matrices formed by random
numbers are discussed in Section 2.4.

3With this assumption, conditions are also satisfied for {x̂k ̸= x | ∀ k ̸= 1}, and x̂2 can be chosen
for convenience of notation.



14 2.4. Conditions for Performance Guarantee Chapter 2

if 2S < M + 1 then Aû = 0 only for û = 0, in which case the solution is unique and can be

unambiguously recovered.

Note that M ≥ 2S, which already give us a lower bound on the number of measurements

M required for the reconstruction of the sparse vector. However, this bound is based on strict

conditions that do not hold in practical scenarios or are overly complicated to verify [51].

In general, for instance, all
(
N
S

)
subsets of columns in A have to be tested to compute its

minimum number of linearly dependent columns. With this in mind, the restricted isometry

property (RIP) [28, 48, 52] was proposed where the sensing matrix A must satisfy the RIP of

order S for δS ∈ (0, 1), such that

(1− δS) ∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δS) ∥x∥22, (2.6)

holds for all ΣS = {x : ∥x∥0 ≤ S}, which represents the set of all S-sparse vectors.

Thus, the aim is to obtain the smallest δS possible by designing the sensing matrix A ac-

cordingly. This is equivalent to ensure that such matrix can promote the unambiguous recovery

of sparse signals. However, having the RIP satisfied for δS ≈ 0 implies in ATA ≈ IN.

This means that an orthonormal sensing matrix is preferred for which the minimum number of

linearly dependent columns is maximized.

In other words, for the RIP of order 2S, one can interpret (2.6) as a condition in which A

approximately preserves the distances between any pair of S-sparse vectors. As a consequence,

the unambiguous recovery of sparse signals is ensured, since distinction of the actual solution

from other candidates solutions remains possible [28, 51].

2.4.1 Construction of Sensing Matrices

It is critical to mention that if a matrix A satisfies the RIP, then different CS methods and algo-

rithms can be proven to have numerical stability and robustness in noisy measurements [28,52].

Moreover, the RIP also facilitates analysis with random matrices, thus avoiding the aforemen-

tioned exhaustive combinatorial search involving subsets of columns in A [47]. For these

matrices, entries are drawn from independent standard random variables, hence simplifying its

construction [52]. Besides that, they have other desirable properties, such as high probability

of presenting a small RIP constant δS [47,52]. Some examples are the iid Gaussian matrix, the

Bernoulli matrix where P (Ai,j = ±1/
√
M) = 1/2 or matrices based on other sub-Gaussian

distributions [12, 47]. In this way, the probability of perfectly recovering S-sparse signals by

employing (2.5) is high when at least M ≥ CS log (N/S) measurements are taken, for some

constant C that depends on how A is constructed [12, 47, 52].
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2.5 Sub-Nyquist Sampling: An Example

In this section we bring a typical example of CS implementation, namely, sampling of a signal

at sub-Nyquist sampling rates. Albeit simple in its conception, this example allows us to verify

to what extent CS parameters can be defined based on the theory described so far. Moreover,

it makes possible to compare CS performance with that of well established methods such as

the sinc interpolation based on the Nyquist frequency. Note that this example complements

what was studied about CS in this work but its scope is limited: We refer the interested reader

to [28, 48, 51, 52] for more information about practical implementations of CS.

Let us first define the signal to be sampled, x, as the one described in (2.3), that is, a

sum of sinusoidal signals. Recall that we assume the finite-dimensional CS model, such that

the sampling or sensing and compression operation is carried out as defined by (2.1). For

CS, entries of the sampling matrix A are drawn from a standard iid Gaussian distribution

and normalized by 1/
√
N . As discussed in Section 2.2, it is also necessary to multiply the

uncompressed signal by a basis function, Φ, to ensure that a sparse signal is reconstructed.

More specifically, this operation denotes the IDFT such that the sampled and compressed signal

is given by: y = AΦx̃. Alternatively, we formulate this operation in a slightly different way,

that is:

y = AΦ−1x︸ ︷︷ ︸
x̃

, (2.7)

for which Φ−1 represents the DFT matrix. This formulation allow us to establish ideal condi-

tions for the example studied but it requires the calculation of the DFT before the reconstruction

operation. These ideal conditions refer to the possibility of defining the largest entries of the

transformed signal beforehand, as is briefly explained in Section 2.2.

In contrast, for the classical sampling operation we have

A =
∑
i

eie
T
i , ∀ i ∈ {1,⌊Nts⌉,⌊2Nts⌉, . . . ,⌊(fs − 1)Nts⌉}, (2.8)

which denotes an identity matrix with ones at entriesAi,i defined by the Nyquist rate ts = 1/fs;

where ei is the vector with 1 (one) at its ith entry and 0 (zero) otherwise. Also note that

A ∈ RN×N and, as expected, only the sampling operation is performed and no compression

is implied since M = N . In other words, the equivalent of classical sampling in the finite-

dimensional model, is represented by an operation where every ith entry of x is stored while

all the remaining become null entries.

The compressed signal is reconstructed using the ℓ1 minimization (2.5) and then the DFT

is calculated to obtain x̂, whereas in classical sampling the sinc interpolation is employed for
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Figure 2.3: (a) An excerpt of the sampled signal, x ∈ R2047, and the reconstructed versions
of it using (2.9) (Nyquist-Shannon) and CS, with M = 161 and M = 91, respectively. (b) An
instance where M = 50 for CS reconstruction.

reconstruction as follows

x̂ (n) =
∑
∀i
y (i) sinc

(
n− i− 1

Nts

)
, n ∈ {0,1, . . . ,N − 1}, (2.9)

wherein y ∈ RN is the sampled signal and sinc(v) = sin(πv)/πv.

Figure 2.3 (a) presents the sampled signal, x ∈ R2047, overlapped by the reconstructed

versions of it using (2.9) and CS, with M = 161 and M = 91, respectively. Through a simple

visual inspection of Figure 2.3 (a) its possible to verify that both reconstructions operations

perform satisfactory. Moreover, the mean-squared error (MSE)4 is provided where MSE =

∥x′ − x̂′∥22/N , which as indicated in Figure 2.3 (a) shows values that corresponds to near

perfect reconstruction. Note also that max∀i(i) = 80 in (2.3) which, according to the well-

known Nyquist-Shannon theorem, implies in M = fs > 160 for a perfect reconstruction of

the sampled signal. Similarly, for CS: M ≥ CS log (N/S) ≥ C × 67, for which the value

M = 91 was chosen based on tryouts with different values.

Therefore, we have M = 91 < 160 for CS, meaning that the signal was sampled at a sub-

Nyquist rate. This ratifies in practice the core idea of CS that the true information contained in

4Before calculating the MSE, signals are normalized such that x′ = x
√

2/
∑

∀iA
2
i , and, conse-

quently, ∥x′∥22 = 1.
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Figure 2.4: CS reconstruction performance, as measured by the MSE, for a range of M val-
ues. Observe that the theoretic value of M/C = S log (N/S) = 67 is indicated for reference.

a signal is not necessary of the same size of its dimension. In the example discussed S ≪ N ,

since only S = 16 sinusoidal tones form the sampled signal but it is in fact a 2047-dimensional

signal. However, if we make M arbitrarily small in CS then the reconstruction performance

can degrade severely with high probability, as illustrated in Figure 2.3 (b). Moreover, Figure

2.4 brings the CS reconstruction performance, as measured by the MSE, for a range of M val-

ues; using Monte Carlo simulations where at each round a new sensing matrix A is generated.

Although parameters of (2.3) could also be chosen at random for each round, they are fixed for

all rounds given that the aim here is to analyze the CS capacity for reconstructing a specific

signal. Thus, note in Figure 2.4 that for approximatelyM > 100 the reconstruction is near per-

fect. In conclusion, it was also observed that for this particular example the CS reconstruction

performance is maintained almost unaltered for a compressible signal, that is, when the signal

x̃ is not perfectly sparse.

2.6 Conclusion

In this chapter we provided an introductory treatment on the subject of CS. It was shown that

by using CS, signals can be compressed, that is, have their dimension reduced, starting from

a simple linear operation and, subsequently, being perfectly recovered with overwhelmingly

high probability. Some intuitive justification were given as to the conditions in which perfect

recovery can be achieved. Moreover, an illustrative example was also discussed, where sub-

Nyquist sampling is presented as one interesting application of CS.

As will be demonstrated later in Chapter 4, indeed reconstruction algorithms discussed in

Section 2.3 do not play an important role in CL. However, these algorithms and related con-

cepts are laid out in this chapter as a means to hint at their computation complexity. Therefore,

it is more clear now that employing ML algorithms in the compressed domain may reduce the

complexity as discussed further in Chapter 3.





Chapter 3

Machine Learning

3.1 Introduction

Generally, ML can be defined as a computer program that is not explicitly written for solving

specialized problems or tasks. Instead, it learns from available data and its own mistakes,

enabling itself to adapt and solve a broad variety of problems [18,20–22]. A computer program

is said to learn from experience E with respect to a task T and performance measure P, if its

performance at task T, as measured by P, improves with experience E [19, 21].

There are classes of tasks where ML algorithms excel and for which explicit algorithms are

impractical or difficult to obtain. Some examples are classification, regression, pattern recogni-

tion, automatic language translation, data mining and control [19–21]. A classical application

example of ML is image classification. For this classification task T, the objective is to decide

of which class the input image belongs to. Before producing a decision, the ML algorithm has

to learn image features of all classes, that is, learn from experience E. This learning process is

called training, which is realized by evaluating decisions produced by the ML algorithm against

certified correct decisions.1 Finally, a performance measure P is then derived from the training

process and used by the ML algorithm, in order to improve itself at the task T.

Formally, let

STR =
{(
χ(1),θ(1)

)
, . . . ,

(
χ(NTR),θ(NTR)

)}
, (3.1)

represents the training set which is composed by NTR input samples of the feature vectors χ

and the labels or targets θ. Consider a classification example for digital communication, where

χ is a vector of received quadrature amplitude modulation (QAM) symbols, corrupted by the

communication channel, and θ is the vector of corresponding transmitted QAM symbols. The

1Correct decisions, also known as ground truth, can be generated by humans that manually classify
images used during the training process.
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ML algorithm output, denoted as {θ̂(1), . . . , θ̂(NTR)}, and labels are evaluated by a function

that quantifies the discrepancy between correct and ML decisions, that is, P is computed. Some

common metrics are the MSE and the cross-entropy function, where the former is commonly

used for regression tasks and the latter in classification tasks [18, 21].

Over the next section, neural networks, which form a subclass of ML algorithms [20], are

introduced. Notice that the concepts and notation presented above can be seen as a general

framework for describing supervised learning ML and NNs. Other instances include: unsuper-

vised learning, reinforcement learning, among other learning frameworks [18–22]. However,

most ML applications nowadays falls within the supervised learning category, mainly because

its theory is better understood while stable and efficient algorithms are widely available [22].

In this work, we use supervised learning algorithms, which are more suitable to the detection

problem proposed in Chapter 4.

3.2 Neural Networks

The recent popularity surge of NNs has given rise to a myriad of different architectures [55].

Among the most prominent ones are the multilayer perceptron (MLP), CNN and recurrent

neural network (RNN) architectures [20, 21]. The MLP is one of the simplest form of NN

architecture, but it is fairly similar to more sophisticated NNs, known as deep neural net-

works (DNNs) [18]. The CNN has shown great potential in solving tasks where spatial cor-

relation is concerned, as for instance, in image processing, pattern recognition and channel

estimation [21]. It suffers, however, from a high computational cost [20]. For capturing tem-

poral dependencies or correlations, the RNN is shown to be more adequate given its feedback

loops, where neurons outputs are fed back to their inputs [20,21]. Nevertheless, in this work we

choose the MLP, given its relatively simple structure and because the aforementioned spatial

and time dependencies are not part of the detection problem of the CL scenario described in

Chapter 4. Furthermore, notice that the MLP is a universal function approximator [18, 21, 56],

meaning that the input-output relationship of any given task can be learned arbitrarily well if

the proper training is executed.

3.2.1 Multilayer Perceptron Architecture

The MLP is formed by L+1 layers ofNℓ, ℓ ∈ {1, . . . ,L+1}, perceptrons or neurons each, usu-

ally grouped in three main layers, namely input, hidden and output layers. Fig. 3.1 illustrates

this architecture.

Layers are fully connected, meaning that each neuron of the ℓth layer is connected to
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Figure 3.1: MLP architecture. The MLP is formed by L + 2 layers of Nℓ perceptrons or
neurons, usually grouped in three main layers: input (ℓ = 0), hidden (ℓ ∈ {1, . . . ,L}) and
output (ℓ = L+ 1) layers.

Table 3.1: Examples of activation functions. Note that fn,ℓ represents the non-linear activa-
tion function of the nth neuron from layer ℓ.

Name Activation function fn,ℓ (·)
sigmoidal σ (zn,ℓ) =

1

1+e
−zn,ℓ

hyperbolic tangent tanh (zn,ℓ) = e
zn,ℓ−e

−zn,ℓ

e
zn,ℓ+e

−zn,ℓ

softmax softm (zn,ℓ) =
e
zn,ℓ∑Nℓ

n=1 e
zn,ℓ

rectified linear unit (ReLU) ReLU (zn,ℓ) = max (0, zn,ℓ)

all Nℓ−1 neurons of the preceding layer and similarly to all Nℓ+1 neurons of the next layer.

Mathematically, the output of neuron n, n ∈ {0, . . . ,Nℓ − 1}, in layer ℓ is given by

χℓ (n) = fn,ℓ (zn,ℓ) , with zn,ℓ = wT
n,ℓχℓ−1 + bn,ℓ, (3.2)

where χℓ ∈ RNℓ is the ℓth layer output and χ0 is the input feature vector that is fed to the

MLP. The connections are represented by weights wn,ℓ ∈ RNℓ−1 for which wn,ℓ (k) is the

weight between the kth neuron of layer ℓ − 1 and the nth neuron of layer ℓ. The parameters

bℓ ∈ RNℓ are bias terms for layer ℓ and fn,ℓ is the non-linear activation function of the nth

neuron of layer ℓ. Some examples of activation functions are presented in Table 3.1 [18, 21].

Note that the neuron itself is a simple processing unit whereby a linear operation is carried

out, resulting in zn,ℓ, followed by a non-linear transformation by fn,ℓ. However, in general,

the power of NNs lies in the fact that a network of these neurons is able to devise a learning

method that implicitly learns the data structure and its underlying distribution [20, 21]. For the

sake of simplicity, hereafter MLP and NN refer to the exact same architecture.
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3.2.2 Training

NNs primary objective is to learn a given task as, for instance, detection of QAM symbols.

More specifically, NNs should be able to learn the desired input-output relation by optimizing

their own parameters [21]. To achieve this goal, the training of a NN includes the tuning of

learnable parameters, which are weights and bias terms of the architecture in Fig. 3.1. First,

let the weight vectors, wn,ℓ, be rearranged in a matrix Wℓ ∈ RNℓ−1×Nℓ such that Wℓ =

[w1,ℓ, . . . ,wNℓ,ℓ]. Moreover, considering a supervised learning framework, let us define (3.1)

as the training set, where here the actual NN output isχ(nt)
L+1 = θ̂

(nt), for all nt ∈ {1, . . . , NTR},
and χ(nt)

0 = χ(nt). Thus, we have

θ̂
(nt)

(W,b) , ∀ nt ∈ {1, . . . , NTR}, (3.3)

wherein W = {Wℓ}L+1
ℓ=1 and b = {bℓ}L+1

ℓ=1 represent the sets of all parameters to be opti-

mized. This shows that the actual NN output depends on these parameters, which justify why

they must be accounted for by the NN when training. This leads us to another important aspect

of training: minimizing the loss function. In short, to learn, NNs minimize a function that mod-

els the discrepancy between actual NN outputs, θ̂
(nt), and desired ones θ(nt). This discrepancy,

also known as training error or loss, can be written as follows [21]

L (W,b) =
1

NTR

NTR∑
nt=1

L
(
θ(nt), θ̂

(nt)
(W,b)

)
, (3.4)

for whichL (·, ·) is the referred loss function that ultimately yields a performance criterion [22].

Therefore, the training process can be mathematically described by the following optimization

problem

minimize L (W,b)

subject to Wℓ ∈ RNℓ−1×Nℓ , ∀ ℓ ∈ {1, . . . ,L+ 1} (3.5)

bℓ ∈ RNℓ , ∀ ℓ ∈ {1, . . . ,L+ 1}.

To elaborate, consider now the binary cross-entropy loss function given by the following ex-

pression [21, eq. 20]

L
(
θ, θ̂

)
= −

NL+1∑
i=1

θi log
(
θ̂i

)
+ (1− θi) log

(
1− θ̂i

)
, (3.6)

where θi ∈ {0, 1} ∀ i, θ̂i have entries in [0, 1] ∀ i, and NTR = 1, NL+1 = 1 for the sake of

brevity. It is easy to show that as the actual NN outputs, θ̂, depart from the target values, θ,

the loss function increases as a result. This is illustrated in Figure 3.2 for a single output of

the NN. Recall that the cross-entropy is typically employed in classifications tasks, meaning
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Figure 3.2: The binary cross-entropy loss function behavior for a range of values for the ith
actual NN output.

that target values can be indicators, for example, of the known constellation coordinates that

are transmitted for the training procedure. Consequently, in this case the actual NN outputs are

the estimated probabilities that a given symbol was transmitted, which can be obtained via the

sigmoidal or softmax activation functions (see Table 3.1), for example. More specifically, the

loss function given by (3.6) can be interpreted as a measure of the divergence between θ̂ and

θ, for which (3.5) is the equivalent to minimizing the Kullbach-Leibler divergence between the

desired (target) and actual outputs [21].

It is important to mention, however, that solving (3.5) is not trivial given that its objective

function is not convex with respect to the optimization variables [21, 57]. This is a conse-

quence of the multiple layers of non-linearity displayed by NNs architectures. Nevertheless,

unlike classical optimization, the goal of training is not to find the global minimum of the loss

L (W,b). Instead, a trade-off must be achieved between a sufficiently low local minimum and

a suitable generalization capacity for the NN [21]. This is further discussed in Section 4.5.

As a consequence of this fact and of the increasing availability of computational power, several

efficient algorithms for solving (3.5) were proposed in the literature (see [20,21] and references

therein).

These algorithms are mainly first-order methods based on the gradient descent [18,20,21].

By definition, the gradient descent points in the direction of maximum decrease of the loss

function, which can be used for minimizing it. This requires computation of the training loss

derivatives with respect to all learnable parameters, that is,

∇WL (W,b) =
1

NTR

NTR∑
nt=1

∇WL
(
θ(nt), θ̂

(nt)
(W,b)

)
; (3.7)

∇bL (W,b) =
1

NTR

NTR∑
nt=1

∇bL
(
θ(nt), θ̂

(nt)
(W,b)

)
. (3.8)

However, computing the derivatives in (3.7) and (3.8) entails high computational costs. For-

tunately, this can be done efficiently via the backpropagation algorithm, where the multivari-

able calculus chain rule is leveraged to propagate the derivatives backwards throughout the

network [20, 21]. These derivatives are then used to update the learnable parameters in the
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following manner:

W = W − α∇WL (W,b) ; b = b− α∇bL (W,b) , (3.9)

where α controls by how much, or how fast, the loss function is reduced; it is called the learning

rate. This update process is repeated until the loss function is reduced to an acceptable value,

which effectively solves (3.5).

3.3 Compressed Learning

CS exploits sparsity properties of signals to recover them from a low dimension space without

any loss of information, if certain conditions are met. For some sensing applications, however,

signal reconstruction is not necessary. An example is SS, for which the task is to identify

underlying patterns in the signal rather than its full reconstruction. With that in mind, CL

has recently emerged as a solution for extracting relevant information of compressed signals,

without the computationally expensive reconstruction stage. In CL, the signal reconstruction

is substituted by a classifier based on ML algorithms. It was demonstrated by [28, ch. 10], that

a support vector machine (SVM) classifier in a lower dimension has approximately the same

accuracy of a SVM classifier in the uncompressed higher dimension.

To elaborate, first consider that the SVM classifier is a linear threshold classifier in the

feature space X = {χ(n)}∀n, consistent with the training set STR in (3.1). As such, it can

be described by a function fw (χ0) = sign
(
wTχ0

)
, where w ∈ RN is the corresponding

linear threshold vector, that is initially in the uncompressed higher dimension. For the sake

of generality, soft margin SVM classifiers2 are discussed, for which the so-called hinge loss is

minimized, leading to

minimize E
[
(1− θ(i)wTχ(i))+

]
+
∥w∥22
2C

subject to w ∈ RN , (3.10)

where the right term is the regularization loss and C is the regularization constant. Therefore,

let the minimized loss or objective function in (3.10) be rewritten as

L (w) = H (w) +
∥w∥22
2C

, (3.11)

and assume that there exists a linear threshold (oracle) classifier with corresponding vector,

say w0 ∈ RN , that has small norm ∥w0∥22 and achieves a sufficiently low generalization

error. Moreover, consider also that the classifier trained with the compressed training set,

2The soft margin SVM is used for training sets that are not necessarily linearly separable.
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Y = {Aχ(n)}∀n, is denoted by zY ∈ RM .

After these initial considerations, an extensive discussion is presented in [28, ch. 10] es-

tablishing theoretical results for comparing the performance of the aforementioned classifier in

the uncompressed and compressed domain. However, only the major results published in [28,

§10.7.1, p. 456] are presented here, since only a hint of the CL potential as a technique suffices

for the purposes of this work.

These results lean on the relationship between the RIP condition in (2.6) and the

Johnson–Lindenstrauss property (JLP), which is important in several ML applications as, for

instance, nearest-neighbor approximation, graph approximation and data-streaming [28, ch.

10]. More specifically, let χ(1) and χ(2) denote two arbitrary vectors in the feature space X .

Therefore, the sensing matrix A satisfies the JLP condition if, with probability at least 1−ρ, the

matrix A preserves the distances between vectorsχ(1) andχ(2) up to a multiplicative distortion

δϵ, such that:

(1− δϵ) ∥χ(1) − χ(2)∥22 ≤ ∥A
(
χ(1) − χ(2)

)
∥22 ≤ (1 + δϵ) ∥χ(1) − χ(2)∥22. (3.12)

Consequently, for every positive integer S, with probability at least 1−
(
N
S

)
( 6√

δϵ
)Sρ, the sensing

matrix A also satisfies the RIP condition in (2.6) with δS = 5δϵ. Finally, it is shown that, if

the matrix satisfies the JLP condition, then follows that the SVMs’ classification performance

in the compressed lower dimension is close to optimal. Hence, if Gaussian or sub-Gaussian

random matrices A are considered, then we have

H (zY) ≤ H (w0) + O

(
4

√
logNTR

M
+

√
logNTR

NTR

)
, (3.13)

wherein NTR is the number of vectors in the feature space X , that is, the number of train-

ing samples, and M is the dimension of the compressed domain. Note that, exceptionally in

(3.13), we have the O(·) operator denoting a numerical approximation rather than the asymp-

totic behavior of the computational complexity, O(·), as is implied otherwise throughout this

work.

To conclude, it is easy to show in (3.13) that as M increases, the upper bound of the hinge

loss in the compressed domain becomes tighter to the loss of the reference oracle classifier w0.

This means that the CL performance is closer to the optimal as the dimension of the compressed

domain enlarges, as expected and, moreover, consistent with the results shown in Subsection

2.5. Furthermore, observe also that exceedingly high numbers for the training samples, NTR,

may cause distortion of the regularization loss [28, ch. 10], which in turn loosens the upper

bound in (3.13). This effect is, however, significantly less impactful in (3.13) as the compressed

samples are increased.
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3.4 Conclusion

Throughout this chapter, we discussed the main concepts of ML algorithms and its framework

in the context of NNs architectures. We focused primarily in the supervised learning framework

supported by the back propagation optimization of MLP architectures, which represents the

foundation of more advanced learning as, for instance, DNNs, CNNs and others. Finally,

the CL concept could be briefly introduced, since it relies both on ML algorithms and the

CS technique. Over the next chapter, the implications of CL that were briefly discussed are

explored in the context of communications systems.



Chapter 4

Compressed Learning for SISO
Systems

4.1 Introduction

Suppose that C PUs are distributed over a given area and N SUs perform SS to identify vacant

spectrum channels, each SU generating a unique sample. The measurements taken by all SUs

are transmitted to a gateway and compressed using CS. These M < N compressed measure-

ments are in turn transmitted to the FC using an OFDM system. This is necessary, since it

is assumed that gateways do not have the processing power and all necessary information to

perform the final decision on the channel occupancy. The importance of gateways is that they

are geographically near to the SUs, which allied with a robust PHY protocol, allows for a com-

pression with measurements free of errors. It is also important to mention that all samples are

transmitted to the FC, instead of just indexes i of signal classes encoded in QAM symbols, for

example. This is done to improve robustness, since each sample is transmitted by an orthogonal

subcarrier, and also because gateways do not have proper information on the actual class of the

processed data signal. Moreover, note that A is chosen using the CS technique so as to spare

resources at the gateway, such as storage and processing time [16]. Thus, it is expected that

codewords given by Ax(i) are not optimal. Fig. 4.1 depicts the system model for this specific

scenario.

In this work we assume that SUs’ samples already represent spectrum occupancy decisions,

meaning that specific SS techniques and their performance are not analyzed. Thus, let each

SU decision be represented by P (x(i)(n) = ±1) = 1/2, for all n ∈ {1, . . . , N} and i ∈
{1, . . . , C}. In other words, SUs decisions, that is, if a PU is transmitting and the spectrum is

occupied (+1) or otherwise (−1), are assumed to be iid Bernoulli random variables. Remember
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Figure 4.1: System model. Each SU performs SS and generate an unique sample, which is
then transmitted to a gateway and compressed. Compressed measurements are finally trans-
mitted to the FC via OFDM.

also that PUs are assumed to employ the listen-before-transmit protocol, which implies that

each PU waits for its turn to transmit, making reasonable to assign a class for each specific

pattern of spectral occupancy generated by C PUs. To elaborate, consider multiple patterns of

spectral occupancy composing different classes, such that

i = 1

i = 2

i = 3

i = 4

i = 5︸ ︷︷ ︸
Classes

Patterns of spectral occupancy︷ ︸︸ ︷
1 1 1 1 1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 −1 −1 −1 −1 −1 1 1

1 −1 1 1 1 −1 −1 −1 1 −1
−1 −1 1 −1 −1 1 −1 −1 −1 −1︸︷︷︸

nth SU

(4.1)

wherein we have, for example, C = 5 PUs using the spectrum and N = 10 SUs deciding

whether the spectrum is available or not. Therefore, decisions generated by each SU at cer-

tain geographical locations are then collected into a pool of decisions, which in turn forms an

unique1 class of SU decisions depending on which PU is transmitting at given time-frame. In

conclusion, observe thus that {±1} Bernoulli levels can be seen as indicators of spectral occu-

pancy in a given area that the nth SU covers and not of a specific frequency band, since PUs

use the same spectrum without collision.

1Data signals x(i) become increasingly orthogonal to each other as N →∞.
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4.2 System Model

Hence, the time-domain baseband representation of the received compressed measurements or

data signal, after the CP removal, can be written as

rt = ht ⊛ yt
(i) + nt, (4.2)

where ht ∈ CM is the channel impulse response, yt
(i) ∈ CM , i ∈ {1, . . . ,C}, is the ith class

transmitted data signal and nt ∈ CM is the iid complex additive white Gaussian noise (AWGN)

with n ∼ CN
(
0, σ2IM

)
. Note that yt

(i) is the OFDM symbol in the time domain after being

operated by the IDFT and ⊛ denotes the circular convolution. We assume that the CP length

is larger than the maximum delay spread. Therefore, on the receiver side, after performing the

DFT, we obtain the received data signal in the frequency domain as follows

rf = Frt = Hyf
(i)︸︷︷︸

Ax(i)

+ nf, (4.3)

in which F ∈ CM×M is the Fourier matrix, H ∈ CM×M is a diagonal matrix with the channel

frequency response, that is, H = diag(hf), whereas yf
(i) ∈ RM is the M -point DFT of yt

(i)

and nf is the complex AWGN in the frequency domain.

4.2.1 Channel Estimation

For channel estimation, it is assumed that pilot symbols are transmitted in the first OFDM

block followed by a block of data symbols. Combined, they form a frame [58]. Thus, Np pilot

symbols are uniformly distributed across subcarriers so that cp (pL∆), p ∈ {0, . . . ,Np − 1},
represents the pth pilot symbol given an integer L∆ = (M − 1)/Np. Furthermore, we also as-

sume that channel coefficients at pilot frequencies are estimated by the minimum mean square

error (MMSE) estimator, expressed by

ĥf (cp) =
E
[
∥H∥22

]
E
[
∥H∥22

]
+ 1

ΓMMSE

hf (cp) cp, (4.4)

where E
[
∥H∥22

]
is the channel second moment and ΓMMSE represents the signal-to-noise ratio

(SNR) at the estimator, in which the noise is assumed to be Gaussian distributed.

Note that an interpolation of these coefficients are used to estimate the channel at interme-

diary subcarriers when Np < M . Consequently, the estimated channel coefficient at subcarrier
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index k, k ∈ {pL∆, . . . , (p+ 1)L∆}, is given by

ĥf (k) = ĥf (cp) +

[
ĥf (cp+1)− ĥf (cp)

]
(k − pL∆)

L∆
. (4.5)

4.3 Compressed Detection

Frequently, it is of interest to be able to detect and classify a received data signal based on its

noisy version. Moreover, such classification task can be performed on the compressed data

signal, saving resources such as storage and energy. In what follows, a compressive detection

problem withC classes is presented, each class corresponding, for instance, to a specific pattern

of spectral occupancy, as presented in Fig. 4.1. For tackling this task, first a variation of the

well-known maximum likelihood detector (MLD) is analyzed followed then by a proposed

detector based on the CL concept.

Besides the performance comparison in terms of misclassification or correct classification

rates, it is essential also to consider the computational complexity or cost of such detectors. For

this purpose, over the next subsections, a complexity analysis based on flop count is presented

for each detector.

4.3.1 Maximum Likelihood Detector

Assuming that the data signal yf
(i), i ∈ {1, . . . ,C}, composes a set of classes and that classes

occurrences are equiprobable, the MLD decides in favor of the index î that satisfies [13, 16]

î = argmin
i
∥rf − ĤAx(i)︸ ︷︷ ︸

yf
(i)

∥22, (4.6)

wherein rf ∈ CM is given by (4.3), A is a knownM×N sensing matrix as defined in Chapter 2,

x(i) ∈ RN are the known uncompressed vectors, and Ĥ ∈ CM×M is a diagonal matrix with

estimated channel coefficients obtained from (4.5). Here we assume that the sensing matrix is

a normalized orthoprojector, that is, AAT = IM.

The detection performance of the MLD under non-ideal conditions may differ significantly

from the detection performance under optimum conditions. In face of these drawbacks, data-

driven models are showing promising results [18–22]. In the next section, a proposed detector

based on NNs is presented, in which CL is leveraged to promote detection of compressed

signals.
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4.3.2 Neural Network Detector

Let the neural network detector (NND) input be given by the concatenation of the real and

imaginary parts of the received compressed OFDM data signal, that is, χ = [ℜ(rf)
T ℑ(rf)

T ]T ,

unless stated otherwise. Thus, for χ ∈ R2M the NND decides in favor of the index î that

satisfies

î = argmax
i

θ̂i (W,b) , ∀ i ∈ {1, . . . ,C}, (4.7)

where θ̂ ∈ RC , given by (3.3), is the NND output with the estimated probabilities of occurrence

for each class. In other words, (4.7) can be seen as a multiclassification problem withC classes,

where θ̂i (
∑

i θ̂i = 1) is the output of the ith neuron of the last layer that uses the softmax

function, given in Table 3.1.

4.4 Computational Complexity

Before presenting the complexity evaluation, notice that: (i) in this work a flop is defined as one

multiplication followed by one addition; (ii) differences in flops counts smaller or equal than a

factor of two are not considered; (iii) for the sake of simplicity, calculations with complex num-

bers have the same cost of that with real numbers. It is important to highlight that flop count is

an inherently imprecise method for estimating computational complexity, but it gives estimates

which are sufficient in many cases [53, appx. C.1.1, p. 662]. Hence, the approximations carried

out in this work do not hamper the overall precision of the method.

4.4.1 Maximum Likelihood Detector Complexity

Although the MLD yields optimum performance in terms of class detection error, it has a high

computational complexity that is not feasible in most practical applications. The cost of the

MLD in terms of flop count is approximatelyO(C(MN+1)), but usuallyMN ≫ 1, so that it

can be further approximated to O(CMN). Therefore, the cost increases significantly for high

dimensional signals consisting of several classes.

4.4.2 Neural Network Detector Complexity

For the NND, it is assumed that all learnable parameters W and b are defined in the offline

training stage described in Chapter 3. Therefore, the computed computational complexity of

the NND considers only the online detection stage, more commonly denoted as forward-pass
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stage [23, 27]. This term refers to the direction of data flow across the NN, meaning the data

goes from input to output whereas in training the flow is reversed.

With this in mind, the NND forward-pass complexity is shown to be approximately

O(dim(χ)N1 +
∑L

ℓ=2Nℓ−1Nℓ + NLC), where dim(χ) denotes the size of the input fea-

ture vector. If the number of neurons is the same across all layers except the last one,

that is, Nℓ−1 = Nℓ = Nη, for all ℓ ∈ {2, . . . ,L}, then the total cost simplifies to

O((L − 1)N2
η + Nη(dim(χ) + C)); knowing that dim(χ) ≫ C, further reduces it to

O((L − 1)N2
η + dim(χ)Nη). Finally, we assume that modern hardware have fast and ef-

ficient ways of computing non-linear activation functions, thus making their cost relatively

small. Consequently, this cost is not factored into the overall NND complexity.

Note that the choice of the NND parameters, for example, the number of neuronsNη, might

not only affect its detection performance but has a direct impact on the computational cost. This

fact creates design complications [57] when dealing with NNs that must be addressed. Over

the next section, specifications of the proposed NND design and of system parameters are

given, followed by a brief description of the computer simulation used for generating numerical

results.

4.5 NND Design and Parameterization

The output layer of the proposed NND architecture consists of C softmax neurons, which is

determined by the number of classes. It is important to mention that although the output layer

has a definite number of neurons, the same is not true for hidden layers. Similarly, the learning

rate and other parameters are not fixed according to other system parameters; combined they

form the NN hyperparameters. All hyperparamenters of interest for the proposed NND are

described in Table 4.1, otherwise they are configured to their typical settings (see [21, §III-C,

p. 16]). Note that hyperparameters were chosen based on a heuristic approach, that is, through

a trial and error process. Indeed, there are other methods, such as grid or random search, but

they were found to be prohibitively complex in terms of computations needed and are not used

in this work.

To adjust hyperparameters accordingly, one must seek a necessary low training error while

also achieving a low generalization error for the target NN [21]. In summary, the generalization

error is measured by evaluating the NN detection performance over a different data set than of

the training set, namely test set. This is important because, in general, ML algorithms are

useful only if they perform well on previously unseen data. However, using the test set for

adjusting hyperparameters can give rise to problems [21]. Therefore, an estimation of the

generalization error must be obtained with the so-called validation set so that hyperparameters

can be properly adjusted. Basically, an optimum balance between underfitting and overfitting
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Table 4.1: Hyperparamenters of interest for the proposed NND.

Hyperparameters Values

Training set size 105 and 106 samples

Hidden layers L = 10

Neurons Nℓ = 200, ∀ℓ ∈ {1, . . . ,L}
Input dimension Rdim(χ)

Output dimension RC

Number of #W = 200 · dim(χ) + 360000 + 200 · C
learnable #b = 2000 + C
parameters #TOTAL = 200·dim(χ)+362000+201·C
Activation ReLU (·) , ∀ℓ ∈ {1, . . . ,L}
functions softmax (·) , ℓ = L+ 1

Learning rate 10−3

Solver Adama

a Adam is an algorithm for training NNs based on stochastic gradient descent methods.
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Figure 4.2: Training and validation errors for the proposed NND as a function of training
epochs. The training set consists of 104 samples and the validation set of 2500 samples. Five
iterations of cross-validation are applied, using the K-fold [1] approach. Although it was
verified that higher learning rates perform better, here for the sake of clarity the learning rate
is 10−5 for low noise and 1.4 × 10−5 for high noise. This guarantees similar training losses
for both noise levels. Moreover, the uncompressed OFDM data signal has 1024 samples and
the number of classes is C = 3, with similar results obtained for compressed signals.

is desirable, where the former is when the NN has limited capacity and can not achieve a low

training error and the latter represents the case where the gap between training and validation

error is big, that is, the generalization error is high.

Fig. 4.2 shows an example of the training error as well of the validation error for the

proposed NND as a function of training epochs. Error or loss values are generated after several

iterations of the training algorithm, each epoch representing how many times the entire training

set is used by the algorithm. Losses are quantified by the average categorical cross-entropy loss,

defined as

L
(
θ, θ̂

)
= − 1

C

C∑
i=1

θi log
(
θ̂i

)
, (4.8)

which is a standard metric for evaluating classifiers. Moreover, note in Fig. 4.2 that two curves
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of validation loss are presented. One of them is associated with a low noise level training

scenario and the other to a higher noise level. Other system parameters are defined according

to the descriptions already provided in this section.

We conclude from Fig. 4.2 that the NND does not underfit regardless of the noise level. In

contrast, the validation loss kept increasing for higher noise levels, even though an extensive

search for combinations of hyperparameters adjustments were conducted as described before.

Nevertheless, this is expected to some degree, since the validation error provides an estima-

tion of the generalization error, which ultimately represents the detection error that is present

in all receivers under noise. It will be demonstrated in the next section that such levels of

generalization error are not prohibitively high.

The library Scikit-learn [59, 60] is employed for modeling the proposed NND and inte-

grating it to the simulation environment based on Python. Numerical results generated by this

simulation are presented in the next section.

4.6 Numerical Results and Discussion

We begin this section by defining all relevant system parameters and then evaluate the detec-

tion performance of the MLD defined by (4.6) and of the proposed NND described by (4.7).

The detection performance is evaluated under practical scenarios of imperfect CSI, low-power

pilot symbols, and for dataset samples mismatch, where channel delay profile and statistics

mismatches are considered. Afterwards, an analysis of computational complexity for these de-

tectors are presented and a conclusion is drawn, taking into account both detection performance

and computational complexity.

4.6.1 System Parameters

For the system model under analysis in this work, the following parameters are adopted: (i) the

SUs’ measurements, x(i), are represented by P (x(i)(n) = ±1) = 1/2, for all n ∈ {1, . . . , N}
and i ∈ {1, . . . , C}, in which each sample is drawn from iid Bernoulli random distribution.

Note that this data signal is not sparse since a perfect reconstruction is not the main objective,

instead a compressive classification problem is studied. (ii) Entries of the orthoprojector sens-

ing matrix A are drawn from a standard iid Gaussian distribution and normalized by 1/
√
N .

(iii) A frequency selective complex Gaussian channel with unitary second moment is consid-

ered. The channel is assumed to be constant over the duration of an OFDM frame and its delay

profile is configured with an exponential decay. Consequently, channel path delays are defined

so that 90% coherence band would correspond to approximately one subcarrier bandwidth. Ta-
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Table 4.2: Channel model parameters, where g ∼ CN (0, 1).

Delay Profile Tapsa τ = M
N
[0, 16, 32, 64]T

Exponential Decay PDPb ρ (i) = 1
⟨τ ⟩ exp

(
− τ(i)

⟨τ ⟩

)
Instantaneous PDP hf (i) = gρ (i)

a Note that τ = [τ (0) , τ (1) , . . . , τ (T − 1)]
T .

b ⟨τ ⟩ = T−1
∑

i τ (i).

ble 4.2 presents the parameters of the channel model used in this work. Note that entries of

the channel impulse response, hf, are drawn from a complex Gaussian random process at each

transmission of an OFDM frame.

Detectors’ performances are expressed by the estimated probability of error (Pe) metric,

which quantifies misclassification rates. This is obtained by averaging detection errors over

multiple Monte Carlo experiments, each one representing: (i) the transmission of an OFDM

data signal with a class index, i ∈ {1, . . . , C}, drawn from a uniform distribution; (ii) the

generation of channel coefficients for the kth subcarrier and their subsequent estimation by

the MMSE estimator; (iii) linear interpolation of the estimated channel coefficients; (iv) the

generation of complex AWGN samples present in the FC; (v) and the final decision for the

class with higher probability of being transmitted. We assume that a single random sensing

matrix A is generated for the initial transmission and fixed for all subsequent transmissions.

In addition, the NND random number generator is also fixed so that results are reproducible

across different simulation executions. The random number generator affects weight and bias

initialization as well as other NN procedures that require randomization. Therefore, it can

be seen as yet another parameter to adjust and, as such, no undue performance gains can be

obtained from adjusting it.

For training the NND, SNR values are drawn from a uniform distribution U ∼
[min(SNR),max(SNR)]. In other words, the NND is trained with random levels of noise

for each training sample. This allows for a more generic training set up that is independent of

the SNR. Recall also that a supervised learning framework is adopted for the proposed NND,

meaning that in training the NND uses known data signals as targets θ. Other parameters of

the NND are configured as described in Section 4.5.

4.6.2 Detection Performance

The error probability of the MLD for compressed data signals is not known, but here we present

an approach to estimate the system performance assuming that the CSI is available at the FC.
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4.6.2.1 Validation of Numerical Results

It is important to note that numerical results presented in this work agrees with theoretic pre-

dictions, at least for the simple case where fading is flat, channel estimation is perfect and the

MLD is employed. As a first step for showing this, recall that data signals x(i) are asymp-

totically orthogonal to each other, that is, between classes, since they are generated by an iid

process. This can be expressed as follows

N→∞︷︸︸︷
N−1∑
k=0

x(i) (k)x(j) (k)→ 0 , ∀ i, j ∈ {1, . . . , C} , i ̸= j. (4.9)

On the other hand, consider also the time-domain carriers for binary frequency shift keying

(FSK) signaling as follows∫ (l+1)T

lT
cos (2πf1t+ ψ) cos (2πf2t+ ψ)dt = 0, (4.10)

through which is shown that, for a signaling interval T , it is possible to obtain coherently or-

thogonal signaling if frequencies f1 and f2 are integers multiples of 1/(4T ) and their frequency

separation is an integer multiple of 1/(2T ) [61]. This means that for the more general case of

M -ary coherent FSK modulations, symbols are associated to a set of carrier frequencies fk,

k ∈ {1, 2, . . . ,M}, with a tone separation of an integer multiple of 1/(2T ) Hz. Consequently,

these symbols are mutually orthogonal to each other in the same way that there is no correla-

tion between data signals x(i) of different classes as N → ∞, or for a sufficiently large N .

More specifically, consider the performance of coherent M -ary FSK modulations over fading

channels, which is computed by the following expression [62, p. 265]; [61, p. 575]:

Pe =
1√
2π

∫ ∞

−∞

∫ ∞

0

{
1−

[
1− 1

2
erfc

(
y√
2

)]C−1
}

(4.11)

× exp

[
−1

2

(
y −

√
2γ
)2]

f (γ) dγdy,

where,

f (γ) =
2N

MΓ
exp

(
−2Nγ

MΓ

)
, γ ≥ 0, (4.12)

and for which the system average SNR, E [γ] = Γ, is defined as

Γ = E
[
∥H∥22

] d2min
σ2

, for (4.13)

dmin = min
i,j
∥x(i) − x(j)∥2 , ∀ i, j ∈ {1, . . . , C} , i ̸= j,
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Figure 4.3: MLD detection performance for a range of SNR values and different compression
rates. Here, N = 1024 samples and C = 32.

wherein dmin denotes the minimum separation [16] among uncompressed data signals x(i). In

this work, unless stated, it is assumed that the SNR of the MMSE estimator, ΓMMSE, has the

same level of Γ.

Therefore, we use (4.11) indirectly as means of predicting the performance of the MLD

detector over fading channels, also considering perfect CSI and compressed signals. However,

note that distances between data signals are compacted, due to the compression of transmitted

data signals. Therefore, a factor2 of M/N [13,16] is weighted in the average SNR from (4.12)

to account for that. This factor is henceforward referred as the compression rate, given its

similarity to the code rate: a parameter that is crucial for defining the performance of error-

correcting codes in the context of channel coding theory [61, ch. 8].

Fig. 4.3 presents the MLD detection performance for a range of SNR values and different

compression rates, where N = 1024 samples and C = 32. Firstly, it can be observed in

Fig. 4.3 that estimated values adhere well with theoretical predictions, thus validating the

simulation model. Furthermore, note that the relative performance loss between compression

rates are indeed in the order of M/N . For instance, the Pe for uncompressed data signals, that

is, for M/N = 1, is Pe
∼= 10−2 at 27 dB, whereas for M/N = 0.5 the same value for Pe

is only reached at 30 dB. This can be verified for all points in Fig. 4.3. Finally, it can also

be observed that these conclusions remain the same regardless of other configurations for the

number of samples N and of classes C, granted that values for N are not prohibitively small.

4.6.2.2 Detection Performance with Imperfect CSI

For the case illustrated in Fig. 4.3, it is assumed that channel estimation is perfect, that is,

perfect CSI. However, this is not expected in practice, since the interpolation in (4.5) is com-

2This factor deviates from the given value when N is exceedingly small, which is a consequence of
the fact that random sensing matrices are asymptotically orthornormal.
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Figure 4.4: MLD and NND detection performances. Here, N = 1024 samples, C = 32 and
the number of pilot symbols are Np = 17 (M/N = 1) and Np = 5 (M/N = 0.25) pilots. The
ideal curves are the MLD detection performance under perfect CSI for each compression rate,
respectively.

monly used for OFDM systems, consequently introducing errors to the estimates. With that in

view, Fig. 4.4 shows the detection performance of the MLD as well of the NND under per-

fect and imperfect CSI, as a function of SNR and multiple compression rates. Also, different

training set sizes, NTR, are evaluated for the NND. Furthermore, note that the number of pilot

symbols are Np = 17 pilots for M/N = 1 and Np = 5 for M/N = 0.25. Additionally, we

found that a considerable gain in performance is achieved for the NND, if the real and imagi-

nary parts of estimated channel coefficients are concatenated into its input. Therefore, for the

scenario studied in this subsection and in Subsection 4.6.3, the NND input is then given by

χ = [ℜ(rf)
T ℑ(rf)

T ℜ(ĥf )
T ℑ(ĥf )

T ]T .

From Fig. 4.4 we conclude that the MLD detection performance under imperfect CSI is

worse than for the ideal case, that is, under perfect CSI.3 The observed performance loss is

approximately of 3 dB for uncompressed (M/N = 1) data signals and of ≈ 2 dB or less for

compressed (M/N = 0.25) signals. This was expected since a very limited number of pilot

symbols are used for estimation, which represents an interesting scenario to study given that

MLDs are notably sensible to estimation errors. Besides that, added to the fact that resources,

for instance, bandwidth and energy, are not always widely available in practice, it is also desir-

able to maximize throughput by reducing the number of transmitted pilot symbols.

As illustrated in Fig. 4.4, the NND detection performance under imperfect CSI; consid-

ering a training set size of NTR = 105 samples, is close to that achieved by the MLD under

3It is a well-known fact that for OFDM systems a frequency-selective wide-band channel is divided
into multiple frequency-flat narrow-band channels. Thus it follows that the performance for selective
fading is the same as for the flat fading, when perfect CSI and an exponential decay for the channel
power delay profile are considered (see Fig. 4.3).
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the same conditions. To elaborate, while the NND detection performance for uncompressed

(M/N = 1) signals is of the order of ≈ 1 dB worse than that of the MLD, for compressed

(M/N = 0.25) signals their performances are practically the same. However, for a training set

size of NTR = 106 samples, the NND outperforms the MLD in all analyzed scenarios. That

way, Fig. 4.4 shows that learning in the compressive domain is applicable in the context studied

in this work. Furthermore, as can be also verified in Fig. 4.4, the NND detection performance

under perfect CSI does not differ considerably in relation to the detection performance with

imperfect CSI, regardless of the training set size considered. Therefore, receivers based on

NNs can potentially benefit from robustness against estimation errors.

4.6.2.3 Detection Performance with Low-power Pilots

Another interesting scenario to evaluate is when the SNR of the MMSE estimator (ΓMMSE) is

fixed relative to the system SNR (Γ). This is equivalent to say that pilot symbols powers are

now fixed and do not depend on data signal power levels. More specifically, this represents

a scenario where energy efficiency is prioritized over detection performance, given that low-

power pilot symbols are transmitted.

Simulation results for this scenario are provided in Fig. 4.5, they are the MLD and NND

detection performances under imperfect CSI as a function of the system SNR, multiple com-

pression rates and different training set sizes; the ΓMMSE is fixed to 0 and 6 dB. Fig. 4.5 shows

that the MLD detection performance is heavily penalized in an energy efficient setting. Notice

how this performance is unsatisfactory even for high values of SNR (Γ), for which it diverges

considerably from the ideal case. For any combination of parameters analyzed in Fig. 4.5, the

proposed NND is equivalent or outperforms the MLD for values of Γ > 20 dB. Therefore, it

can be asserted that the overall detection performance of the NND is superior, because prob-

abilities of error for Γ ≤ 20 dB are nevertheless prohibitive for both NND and MLD. This

renders useless any comparison between them in this SNR range. Note also that the NND does

not make any use of the estimated channel coefficients to obtain the results in Fig. 4.5, since

in this subsection χ = [ℜ(rf)
T ℑ(rf)

T ]T . Thus, by not using pilot symbols to assist signal

detection, the proposed NND not only achieves a better detection performance but it is also

more resource efficient than the MLD. In summary, the proposed NND based on CL presented

itself as a good alternative to the well-established MLD.

4.6.3 Detection Performance under Mismatch of Training Samples

A mismatch between the dataset used for training and the actual available data may severely

degrade the NND performance shown in Subsection 4.6.2. Therefore, in this subsection we

aim to evaluate the NND performance when there is a mismatch between the dataset at the
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Figure 4.5: MLD and NND performances for the scenario where ΓMMSE is fixed to 0 dB ((a)
and (c)) and 6 dB ((b) and (d)). The remaining parameters are configured as described in Fig.
4.4.

training stage relative to the dataset generated for the signal detection stage. Once again, the

performance evaluation will be done through computational simulations. In this scenario, some

aspect of the channel behavior is altered after the weights of the NND were already optimized

or learned, for example. Ultimately, the mismatch is done in order to evaluate the NND gen-

eralization robustness, that is, the NND capacity for performing well under previously unseen

data, considering now a more realistic situation in practical communications scenarios. More

details of the procedures used for establishing the mismatch scenarios are discussed in the fol-

lowing Subsections 4.6.3.1 and 4.6.3.2. In general, in this work we adopt the procedure where

the channel model used during the detection stage is the same in all scenarios, while the model

during the training stage varies according with the target mismatch. This procedure allows us

to compare the probability of error in all scenarios, since a baseline performance is established.

In other words, the performance can be altered only as a consequence of the mismatch.

Furthermore, we now consider that the compressed data signal is transmitted over a fre-

quency selective Nakagami-m [63] channel with unitary second moment. As mentioned in
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Table 4.3: Path delays. The instantaneous power delay profile is obtained by ht (i) = gρ (i),
for which g is now a Nakagami-m channel coefficient.

τ α τ τα τ β τ γ τ δ

Delay Profile M
N
[0, 16, 32, 64]T M

N
[0, 8, 48, 64]T M

N
[0, 8, 16, 32]T M

N
[0, 10, 12]T M

N
[0, 8, 20, 32, 36, 42]T

Subcarrier(s)
within the

coherence band
∼ 1 ∼ 1 ∼ 2.5 ∼ 4 ∼ 1.5

Subsection 4.6.1, here the channel is also assumed to be constant over the duration of an OFDM

frame and its PDP is configured with an exponential decay, as described in Table 4.2. Also, re-

call that channel path delays are defined so that a 90% coherence bandwidth would correspond

to approximately one subcarrier bandwidth. Hence we adopt the reference or baseline delay

profile to be given by τα = [0, 16, 32, 64]T , which is the same channel PDP considered in

Subsection 4.6.2 (see Table 4.2). Accordingly, all delay profiles used throughout the following

subsections are described in Table 4.3, alongside with the respective coherence bandwidths

given as a function of the number of subcarries (considering N = 1024 subcarriers).

4.6.3.1 Channel Statistics Mismatch

In this subsection, we evaluate the impact of dataset mismatches concerning different values of

m for the Nakagami-m distribution. By altering the m parameter, the statistical distribution of

the channel is modified such that behaviors of channels with different scattering effects can be

accurately represented [63]. More specifically, m = 1 represents a strong fading with a purely

diffuse scattering, corresponding to the Rayleigh channel regarded in previous results. How-

ever, for m > 1, the distribution represents channels with a less severe fading as m becomes

larger. Note that the delay profile is now fixed to the baseline values of τα for all scenarios

studied here.

Fig. 4.6 shows the NND performance in terms of probability of error vs. SNR for the

uncompressed and compressed signals. In this analysis, we assume that the Nakagami-m pa-

rameter during the detection stage is always unitary, that is, md = 1, and the Nakagami-m

parameter during the training stage (mt) varies according with the scenario analyzed. The

baseline performance curve is obtained when mt = md = 1. For the mismatched scenarios,

we have the following situations: (i) mt = 2; (ii) mt = 3; and (iii) mt = 10.

Remarkably, no significant change in performance is observed in Fig. 4.6, except at the

high SNR region for M/N = 1, highlighted in the figure for convenience, where a neglectable

performance loss is observed for the mismatch scenarios. Based on Fig. 4.6, we can conclude

that differences between the Nakagami-m parameters during the training and detection stages

do not play an relevant role in the overall system performance. Similarly, if we now consider a

different baseline performance that corresponds to mt = md = 2, as illustrated in Fig. 4.7, we
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Figure 4.6: Relative performance of the NND considering mismatched Nakagami-m statistics
with compression rates of M/N = 1 and M/N = 0.25. We consider the following scenarios:
(i) mt = md = 1 (baseline); (ii) mt = 2; (iii) mt = 3; and (iv) mt = 10, in which mt ̸= md

for (ii)-(iv).
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Figure 4.7: Relative performance of the NND considering mismatched Nakagami-m with
compression rates of M/N = 1 and M/N = 0.25. We consider the following scenarios: (i)
mt = md = 2 (baseline); and (ii) mt = 1 (mt ̸= md).

continue to observe that the NND remains robust to mismatched datasets, that is, when mt = 1

is assumed. Notice, however, that the baseline performance observed in Fig. 4.7 is better than

the ones obtained in Fig. 4.6, since now a larger Nakagami-m parameter is used during the

detection stage, representing a less severe fading in the communication link.

4.6.3.2 Delay Profile Mismatch

Building upon the analysis made in the previous subsection, we now evaluate scenarios where

the NND is trained as a function of channels with different levels of selectivity in their fre-

quency responses. Although the underlying channel statistics remain unchanged, namely

Rayleigh (m = 1) fading, its delay profile, τ , differs between training and detection stages. In

other words, the coherence bandwidth under which the NND is trained differs from that of the

detection stage and, consequently, a mismatched dataset is inevitable.
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Figure 4.8: NND performance considering the channel delay profiles described in Table 4.3.
Note that the superscripts (·)ρ and (·)ρ′ imply that the PDP decay was modified relative to the
baseline (exponential decay).

Fig. 4.8 illustrates the performance of the NND for multiple SNR values, considering that

the delay profile for the detection stage, τ d, is kept fixed, while the delay profiles for the train-

ing stage varies according to the following scenarios: (i) τα = τ d, where no mismatch is

observed; (ii) τ β , corresponding to a scenario where the channel during the training stage is

less selective than the channel during the detection stage; (iii) τ γ , corresponding to a even less

selective channel during the training stage; (iv) τ δ, corresponding to highly selective channel

during the training stage. Additionally, we also analyze (v) τ ρ
α and τ ρ

γ , for which channel path

amplitudes are shuffled randomly at each NND mini-batch training iteration, without modify-

ing path delays for τα and τ γ , respectively; (vi) τ ρ′
γ , where path amplitudes are shuffled only

once before the beginning of training, also keeping the path delays of τ γ unchanged; and (vii)

τ τ
α, in which the PDP remains identical to the one for τα, but with different path delays as

described in Table 4.3. Note also that Fig. 4.8 brings the performance curves for compressed

signals, that is, for M/N = 0.25.

It can be concluded from Fig. 4.8 that a significant performance loss is presented by the

NND under delay profile mismatch. More specifically, greater losses are observed for the τ γ

and τ δ cases (largest and smallest coherence bandwidth, respectively). Notice in Fig. 4.8 that

the NND suffers a loss of approximately 3 dB for these cases compared with the result obtained

when there is no mismatch between the training and detection stages. However, the τ γ and τ δ

delay profiles have, respectively, the largest and smallest coherence bandwidth under analysis

when considering scenarios where mismatch occurs. This shows that the NNDs’ performance

under delay profile mismatch is largely influenced by how the energy is distributed over time

for each channel delay profile order than just the channel coherence bandwidth. Observe also

in Fig. 4.8 that the NND performance for τ β is noticeable better than for τ γ , even though

the latter represents a channel that is less selective in the frequency domain. Furthermore, by

comparing the performances of τ ρ
α and τ τ

α, it becomes clear that mismatch of channel path

delays is more detrimental to the NND than the mismatch of the PDP decay. Note that the
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Figure 4.9: Estimated cost or complexity for the MLD considering execution times in mil-
liseconds.

probability of error for τ ρ
α ≈ τα whereas τ τ

α ≈ τ γ ≈ τ δ, which are significantly worse than

the baseline performance. Also notice that if mismatches are combined, as in the case of τ ρ
γ

and τ ρ′
γ where both the path delays and PDP decay are mismatched, then the performance of

the NND can deteriorate even more, the worst performance being for τ ρ′
γ , where the PDP decay

is modified only once before the NND training.

In the next subsection, we discuss the numerical computational complexity of the proposed

NND. It will be demonstrated that besides having large generalization capabilities, as shown

in this subsection, the proposed NND also presents low computational complexity.

4.6.4 Numerical Computational Complexity

Section 4.4 presented the computational complexity of the MLD and NND, respectively, in

terms of flop counts. As a means to validate these calculations, the Python module timeit.py

[64] is employed here. This module provides measurements of execution times (Et) for spe-

cific code lines, which, in this work, means the code that implements (4.6) and the forward-pass

stage of (4.7). Several execution times of these code snippets are computed and then averaged.

Note, however, that we are interested in the asymptotic rate of change of the complexity as a

function of some system variable, for example, N , rather than specific execution times. There-

fore, the focus here is not to estimate absolute lower bounds for execution times but a general

trend for computational complexity, as in flop counts.

4.6.4.1 MLD Computational Complexity

Fig. 4.9 presents the estimated cost or complexity of the MLD, as a function of the number of

samples N for the OFDM data signal. In addition, these results are also obtained for different

compression rates, M/N , and number of classes C. As expected, it can be verified in Fig.
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Figure 4.10: Estimated computational complexity of the NND considering execution times in
milliseconds. (a) The estimated cost is given in terms of the input feature vector size, dim(χ),
whereas in (b) the estimated cost is computed as a function of Nη.

4.9 that the estimated MLD cost increases quadratically with the number of samples N , since

O(CMN) = O(λCN2), where λ = M/N . Furthermore, Fig. 4.9 shows that the estimated

cost increases faster for higher compression rates. This is consistent with what is predicted by

flop counts, since M is larger for higher compression rates, which in turn increases the cost

given by O(CMN). A similar effect is verified if the number of classes C is increased.

Bear in mind that the MLD complexity could be reduced if the operation Ax(i), for all

i ∈ {1, . . . , C}, in (4.6), is executed once before the initial transmission and reused afterwards.

This is feasible because we assume A is fixed for all transmissions, otherwise the complexity

calculation remains unaltered. However, the storage capabilities necessary to fulfill this task

could become prohibitive in practice, specially for signals with several classes. Therefore, here

we assume that such operation is executed by the MLD for each detection performed at the FC.

4.6.4.2 NND Computational Complexity

The estimated computational complexity of the NND is presented in Figs. 4.10 (a) and (b). In

Fig. 4.10 (a) the estimated cost is given in terms of the input feature vector size, that is, dim(χ),

and for different numbers of neurons, Nη, and layers L. For Fig. 4.10 (b), the estimated cost is

computed as a function of Nη, for some values of dim(x) and L.

An initial analysis of Fig. 4.10 (a) shows that the NND estimated cost does not vary

significantly with dim(χ), regardless of Nη and L. In other words, increasing the number of

samples N for the OFDM data signal and, consequently, dim(χ), does not cause any change

in cost. This contrasts to what is observed for the MLD, where costs increase quadratically

with N . Nevertheless, this was expected because from the flop count for the NND, it can be

concluded that the cost is governed mainly by the number of neurons Nη and layers L. The

justification for this lies in the fact that higher order terms in O(·) contribute the most for
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overall cost. Therefore, it is indeed to be expected that an increase in Nη or L results in greater

costs, as is depicted in Figs. 4.10 (a) and (b). Finally, it is also important to mention that, as

predicted by flop count, no significant changes are observed in the NND estimated cost when

increasing the number of classes C.

Another interesting contrast between the proposed NND and the MLD, is that the former

does not require any knowledge of A entries for detecting compressed data signals. Recall that

the NND learns signals patterns in the offline training stage. That way, the sensing matrix is

learned implicitly by the NND, via compressed signals that constitute the training set. This

means that resources are spared since information about entries of A are not transmitted to the

receiver.

4.7 Conclusion

In this chapter, we presented a system model where SS is performed to identify spectrum

access opportunities. The SS samples are compressed at the gateway with the aim of sparing

its limited resources and then these samples are transmitted via OFDM frames to a receiver.

This receiver, denoted as FC, employs the NND to make the final decision upon the status of

the spectrum, thus performing CL as an alternative solution to the costly MLD.

From results presented in Section 4.6, the following major conclusions can be drawn: (i)

the proposed NND shows that learning in the compressive domain is also applicable to detect

compressed OFDM data signals embedded in noise and affected by channel impairments; (ii)

its detection performance can be better to that achieved by the MLD for scenarios with imper-

fect CSI; (iii) it is robust against imperfect CSI; (iv) it also outperforms the MLD in the energy

efficient scenario, where pilot symbols are transmitted with low power; (v) the proposed NND

also showed robustness for dataset mismatches of the Nakagami-m parameter; (vi) its perfor-

mance depends more on pattern changes in the profile of the channel impulse response than in

the channel coherence bandwidth; and, finally, (vii) the computational complexity of the pro-

posed NND is considerably lower when compared with the MLD complexity, since it remains

largely unchanged with the increase of samples, N , and the number of classes C.



Chapter 5

Learning for MIMO Systems

5.1 Introduction

It was shown in Chapter 4 that detectors based on NNs have a competitive performance when

compared to the optimum MLD, while the former is more robust and less complex than the

latter. However, the system model in the context of these results considers a SISO system.

Recently, several works (refer to [23, 38] and references therein) proposed solutions that at-

tempt to integrate ML and NNs to MIMO systems. One emerging solution involves adapting

NN architectures according to model-driven detection algorithms, such that its iterations are

unfolded on NN layers. This solution is called deep unfolding [38, 65].

In the following sections we propose a deep unfolded detector [43] based on the PDA de-

tector [44] for MIMO systems. The main aim is to achieve the aforementioned advantages of

data-driven detectors for SISO systems in MIMO systems, while advantageous features of the

PDA detector [41] are maintained. In the sequence, we also propose a standalone solution for

the PDA detector that improves its performance in larger MIMO systems, but without the aid

of data-driven approaches. All the same, this chapter focuses on MIMO systems where mul-

tiple antennas transmit data over a rich scattering environment without considering precoding,

relying on detection techniques that can resolve the IAI with affordable complexity, a scenario

where the PDA detector is an interesting solution [41].

5.2 System Model

Suppose that in a multiple antenna system we have Nt transmitting antennas and Nr receiving

antennas, thereby constituting an Nt × Nr point-to-point baseband and fully-digital MIMO
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system. Therefore, bits of data are demultiplexed intoNt substreams, which in turn are mapped

to a sequence of complex symbols. These symbols are transmitted by its respective transmit

antenna using an OFDM system, for which it is assumed that the CP length is larger than the

maximum delay spread for all NtNr channels. Finally, after performing the DFT we have the

following representation of the received baseband signal at the kth subcarrier:

r̃k = H̃kãk + ñk. (5.1)

Here, H̃k ∈ CNr×Nt is the matrix containing all channel frequency responses for the kth OFDM

subcarrier; ãk ∈ CNt represents the symbol vector transmitted by the Nt transmit antennas on

the kth subcarrier of the OFDM block and ñk ∈ CNr is the complex AWGN vector in the

frequency domain at the kth subcarrier for the Nr receive antennas, with zero mean and covari-

ance matrix given by σ2INr . Moreover, note that, in this work, a centralized MIMO system is

assumed where antennas are collocated both at the transmitter and receiver. Consequently, no

multiuser interference is taken into account.

For convenience, henceforth we make use of the real-valued representation [41, 43, 44] for

MIMO systems. Therefore, let the received signal (5.1) be represented by the concatenation of

its real and imaginary parts, such that

rk = Hkak + nk, (5.2)

where

rk =
[
ℜ(r̃k)T ℑ(r̃k)T]T ∈ R2Nr , ∀ k, (5.3)

Hk =

[
ℜ(H̃k) −ℑ(H̃k)

ℑ(H̃k) ℜ(H̃k)

]
∈ R2Nr×2Nt , ∀ k, (5.4)

ak =
[
ℜ(ãk)T ℑ(ãk)T]T ∈ R2Nt , ∀ k, (5.5)

nk =
[
ℜ(ñk)

T ℑ(ñk)
T]T ∈ R2Nr . (5.6)

Moreover, we assume that ℜ(ãk) ∈ SNt and ℑ(ãk) ∈ SNt , that is, the real and imaginary

parts of ãk can take on different values from the finite set of coordinates pertaining to the

square M -QAM constellation. Hence, let S = {±E0,±3E0, . . . ,±(
√
M − 1)E0}, for E0 =√

3
2(M−1) , such that the constellation energy is normalized to 1 (unity).

5.3 Deep Unfolded Detector

A classical problem in the MIMO literature is to decide which symbols were transmitted by

each antenna when only possessing (5.2) at the receiver. Similarly to what is presented in Sub-
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section 4.3.1, this detection problem can be solved optimally, however at great computational

effort, by the MLD for MIMO as follows

âk = argmin
ãk∈S2Nt

∥r̃k − H̃kãk∥22, (5.7)

for which âk ∈ S2Nt is the estimated vector of symbols’ coordinates.

It is known that the prohibitive complexity presented by the MLD motivated the research

of several alternative detectors for MIMO throughout the last decades [41]. The PDA detector

is one of these alternatives that presents significantly lower complexity when compared with

the MLD, with an affordable bit error rate (BER) performance loss under specific conditions,

as will be detailed in Subsection 5.3.5 and Subsection 5.3.6, respectively. In the next subsec-

tion, the PDA detectors’ algorithm first proposed in [44] is briefly revisited, followed by our

proposed deep unfolded PDA (DU-PDA), for which the PDA is the underlying algorithm.

5.3.1 Probability Data Association Detector

Before the detection task is carried out by the PDA detector, the received signal, rk, is prepro-

cessed or equalized using the zero-forcing (ZF) principle as follows [40, 41, 44]

zk = H†
krk = ak + vk, (5.8)

wherein H†
k = (HT

kHk)
−1HT

k is the left Moore-Penrose pseudoinverse and vk = H†
knk is the

enhanced AWGN. Let us rewrite (5.8), such that

zk = eiak(i) +
∑
j ̸=i

ejak(j) + vk︸ ︷︷ ︸
Vi

, ∀ i, j ∈ {0, 1, . . . , 2Nt − 1}, (5.9)

where ei is the vector with 1 (one) at its ith entry and 0 (zero) otherwise, and Vi is a multivariate

random variable (RV) that can be seen as the effective interference-plus-noise contaminating

ak(i) [44]. Therefore, the crux is at detecting the symbol coordinate transmitted by the ith

antenna, while considering that all other j ̸= i transmitted symbols are interference added to

the noise term, which is described by Vi.

Therefore, the PDA detector associates, for each ak(i), a probability vector pi ∈ R
√
M ,

which is given by the evaluation of Pm(ak(i) = q (m) | zk, {pj}∀j ̸=i); q (m) ∈ S being a co-

ordinate of the M -QAM constellation and m ∈ {0, 1, . . . ,
√
M − 1}. It is important to remark

that the PDA detector uses all {pj}∀j ̸=i associated to interfering symbols already detected,

thanks to the incorporation of a strategy similar to that of successive interference cancella-

tion (SIC) detectors. This significantly reduces the computational complexity for calculating



50 5.3. Deep Unfolded Detector Chapter 5

pi, since otherwise Pm(ak(i) = q (m) | zk) would have to be evaluated. The problem here

is the requirement of computing multiple integrals for each received symbol, rendering this

evaluation prohibitive in practice. Dropping the subscript (·)k in order to simplify the nota-

tion and assuming that Vi has a Gaussian distribution [44, 66], then the likelihood function of

z | a(i) = q (m) can be defined as

Pm(z | a(i) = q (m)) ∝ exp (αm (i)) , (5.10)

for which,

αm (i) = (z− µi − 0.5eiq (m))T Ω−1
i eiq (m) , (5.11)

wherein E [Vi] = µi and COV [Vi] = Ωi are given by

µi =
∑
j ̸=i

ej
(
qTpj

)
, (5.12)

Ωi =
∑
j ̸=i

eje
T
j

((
q2
)T

pj − µ2
j

)
+ 0.5σ2G−1, (5.13)

where q = [q (0) q (1) . . . q(
√
M − 1)]T, q2 = q ⊙ q (Hadamard product), and G−1 =

(HTH)−1 is the inverse of the Gram matrix [40] that accounts for the noise enhancement

caused by the ZF. To evaluate the posteriors probabilities associated to each symbol we com-

pute

Pm(a(i) = q (m) | z, {pj}∀j ̸=i) ≈
Pm(z | a(i) = q (m))

√
M−1∑
m=0

Pm(z | a(i) = q (m))

, (5.14)

which can be seen as an approximate form of the Bayesian theorem [66]. Then substituting

(5.10) into (5.14) yields

pi (m) =
exp (αm (i))

√
M−1∑
m=0

exp (αm (i))

. (5.15)

Finally, the PDA detector procedure is given in Algorithm 1.

Note that the optimal detection sequence [67, §II-C, p. 222] used in Algorithm 1 can be

found with the aid of the following operation:

ρ (i) =
1

fT
i Hfi

max

0, fT
i hi −

∑
j ̸=i

|fT
i hj |


2

, (5.16)

where fT
i represents the ith row of F = H† and hj denotes the jth column of H. Note that

larger magnitudes for ρ (i) means that the ith antenna suffers less IAI [41]. In other words,

the off-diagonal entries of the ith row from FH have, combined, smaller magnitudes than its

ith diagonal entry. It is easy to show that the optimal sequence is defined by sorting ρ =
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Algorithm 1 The PDA detector
Require: zk via (5.8)
Require: ki (see (5.16)), ϵ > 0
Ensure: pi (m)← 1√

M
, ∀m ∀ i

1: repeat
2: for i = 1, 2, . . . , 2Nt do ▷ outer iteration
3: p′

i ← pi

4: Compute µki
from (5.12) and Ωki from (5.13) with {pj}∀j ̸=ki

5: for m = 1, 2, . . . ,
√
M do ▷ inner iteration

6: Calculate αm (ki) from (5.11)
7: Evaluate:
8: Pm(ã(ki) = q (m) | z̃, {pj}∀j ̸=ki) ≈ pki (m), from (5.15)
9: end for

10: end for
11: until |pi − p′

i| ≤ ϵ, ∀ i ▷ convergence iteration
12: li ← argmax

m
{pi (m)}, ∀ i

13: Decide transmitted symbols â(i)← qli , ∀ i

[ρ (0) ρ (1) . . . ρ(2Nt − 1)]T in a descending order, denoted as {ki ∈ {1, . . . , 2Nt} | ρ (k0) >
ρ (k1) > . . . > ρ (k2Nt)}.

5.3.2 Deep Unfolding

Prior to presenting our proposed DU-PDA detector, a brief description of NNs and deep un-

folding is provided in this subsection.

In general, the NN architecture has shown great potential for detecting signals, but its

design and parameterization, among other problems, impose limitations, such as those put

forward in Section 4.5. Alternatively, this architecture can be adapted such that iterations of an

given algorithm are unfolded on its layers [21, 23, 38], hence the term “unfolding”. It is also

commonly assumed that the NN employs several layers and, consequently, the term “deep” is

added.

More specifically, consider an algorithm with an input vector denoted by x ∈ RN , for

which its output is given by y ∈ RS , then this algorithm can be expressed by [21]

y (s) = g (x,ψ,Θ) , ∀ s ∈ {0, 1, . . . , S − 1}, (5.17)

wherein Θ is the set of all parameters used by the algorithm, g(·) represents a mapping func-
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Figure 5.1: Deep unfolding architecture. The input vector is given by x and the output is
determined by y, through which each hidden layer unfolds the ℓth iteration of an algorithm.

tion, usually non-linear, and ψ is iteratively updated as follows

ψℓ (s) = f (x, ψℓ−1 (s) ,Θ) , (5.18)

where the ℓth iteration also involves an operation with a mapping function f(·) andψ0 denotes

the initial value.

Therefore, in the deep unfolded context, ψℓ can be understood as the input-output relation-

ship at the ℓth layer of a NN architecture, as illustrated in Figure 5.1. Note that dimensions of

learnable parameters Θ are defined according to the underlying algorithm after which (5.17),

(5.18), and the architecture depicted in Figure 5.1 are based. This includes weights and bias,

for example, which are optimized [21] by the NN training algorithm, as also seen in Chapter 3.

In other words, this means that the number of layers and neurons is fixed, thereby simplifying

considerably the process of defining what is commonly known as the NN hyperparemeters.

Moreover, improvements are also obtained by using the aforementioned learnable parame-

ters directly into the iterative algorithm. That way, learning capabilities of NNs can be applied

for optimizing algorithms such that its global performance, computational complexity, or even

both, are improved. In the next subsection, the PDA detector, reviewed in Subsection 5.3.1, is

implemented using the deep unfolded architecture for NNs, unveiling our proposed DU-PDA

detector for MIMO systems.

5.3.3 Deep Unfolded PDA Detector

Aiming to take advantage of the iterative algorithm of the PDA detector, we propose the

DU-PDA detector. Firstly, in the DU-PDA detector, the received signal, r, is preprocessed

at the ℓth layer by the following operation [43]; [68, §IV-B, p. 1706]

zℓ = âℓ + wℓH
T (r−Hâℓ) , ∀ ℓ ∈ {0, 1, . . . , L− 1}, (5.19)
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where âℓ ∈ R2Nt is the estimated transmitted symbol vector and the scalar wℓ ∈ R represents

a learnable parameter. Note that this preprocessing principle differs from the ZF, which is used

by the PDA detector, as defined in (5.8). In contrast, for the proposed DU-PDA, it is employed

a preprocessing based on the approximate message passing (AMP) algorithm [69], which also

bear similarities with the Richardson method [40, §IV-6, p. 9]. In this way, âℓ is updated

iteratively until it converges to an acceptable approximation of the transmitted symbol vector.

Interestingly, when we have âℓ → a, then the so-called residual term (r−Hâℓ) → n, which

give us a result in (5.19) similar to (5.8).

The preprocessed signal of (5.19) is then fed into the following operation1:

ψℓ∗ (m) = softm
(
(zℓ − µℓ∗ − 0.5eℓ∗q (m))T Ω−1

ℓ∗ eℓ∗q (m)
)

∀m ∈ {0, 1, . . . ,
√
M − 1}, (5.20)

where,

softm (xℓ (m)) =
exℓ(m)∑L−1

m=0 e
xℓ(m)

. (5.21)

Note that the non-linear function softm(·) is applied at each layer. This makes (5.20) identical

to (5.15) except that it is unfolded on successive layers and that ψj = pj . Notably, this

also distinguishes the proposed DU-PDA from other architectures [38, 43, 68] that use instead

optimal denoisers at each layer, which do not account for interfering symbols as the underlying

PDA algorithm of the DU-PDA does. Moreover, since the preprocessing is modified, then it is

necessary to redefine the covariance matrix, Ωℓ∗ , as follows [70, §III-D, p. 2023], [43]

Ωℓ∗ =
∑
j ̸=ℓ∗

eje
T
j

((
q2
)T
ψj − µ2

j

)
+ eℓ∗e

T
ℓ∗COV [zℓ − a] , (5.22)

where,

COV [zℓ − a] =
[ϵℓ]+∥I2Nt − wℓH

TH∥22 + 0.5σ2∥wℓH
T∥22

2Nt
, (5.23)

wherein [x]+ = max (0, x) and for which,

ϵℓ =
∥r−Hâℓ∥22 −Nrσ

2

∥H∥22
. (5.24)

Equation (5.23) can be understood as the empirical MSE estimator of the covariance matrix

originated from the residual and noise terms of (5.19). More importantly, note that Ωℓ∗ is now

a diagonal matrix. This means that computing Ω−1
ℓ∗ is not as costly as its counterpart in (5.11),

that is, in the PDA detector. More details about such implications are given in Subsection 5.3.5.

Therefore, by considering developments presented in this subsection and the general model

1{ℓ∗ ∈ {0, 1, . . . , 2Nt−1}, k ∈ {1, 2, . . . , ⌈L/2Nt⌉−1} | ℓ∗ = ℓ−k2Nt; k2Nt ≤ ℓ < (k+1)2Nt}
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described in Subsection 5.3.2, we have

ψℓ∗+1 (m) = softm (zℓ, ψℓ∗ (m) , {wℓ,µℓ∗ ,Ωℓ∗}) , (5.25)

which is similar to what is evaluated in (5.15) with the addition, however, of a learnable pa-

rameter and a different preprocessing of the received signal. Note also that ψL = y, meaning

that the last layer output is also given by (5.25). Furthermore, let

âℓ+1 =
∑
j ̸=ℓ

ejzℓ (j) + eℓ
(
qTψℓ∗

)
, (5.26)

such that the convergence of (5.19) might be improved, given that the soft combining of sym-

bols’ coordinates and their estimated associated probabilities are fed forward to the next layer.

In Algorithm 2 we detail the general procedure carried out by the proposed DU-PDA

Algorithm 2 The DU-PDA detector.
1: function LAYER(r, H, ψℓ∗−1, âℓ−1)
2: Evaluate (5.19) and (5.22), followed by (5.20) and (5.26)
3: return ψℓ∗ , âℓ

4: end function

Ensure: NTR > 0
Ensure: ψℓ∗ (m)← 1√

M
, ∀m ∀ ℓ∗

Ensure: â0 =
∑

ℓ∗ eℓ∗
(
qTψℓ∗

)
Require: L (UL,ψ) (see (5.27))

5: procedure TRAIN(L (UL,ψ), ψ, â0, NTR)
6: for all Epochs do
7: Generate set of training samples:
8: STR =

{(
r(1),u(1)

)
, . . . ,

(
r(NTR),u(NTR)

)}
9: for ℓ = 1, 2, . . . , L+ 1 do

10: Train: LAYER(r(1,2,...,NTR), H(1,2,...,NTR), ψℓ∗−1, âℓ−1)
11: end for
12: end for
13: end procedure

14: procedure DETECT(r, H)
15: Execute foward-pass: LAYER(r, H, ψℓ∗−1), ∀ ℓ
16: dℓ∗ ← argmax

m
{ψℓ∗ (m)}, ∀ ℓ∗

17: end procedure

18: Decide transmitted symbols â(ℓ∗)← qdℓ∗ , ∀ ℓ∗
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detector.

The ground truth used for training the NN is defined by

uℓ∗ = [u (0) u (1) . . . u(
√
M − 1)]T, such that UL = {uℓ∗}∀ℓ∗ . It indicates the

known constellation coordinates that are transmitted for the training procedure, thus

uℓ∗ (m) ∈ {0, 1} ∀ m. Observe also that the PDA detector outputs approximate posteriors, as

shown in (5.15), which is leveraged by our proposed DU-PDA detector in Algorithm 2 when

employing the average categorical cross-entropy loss function:

L (UL,ψ) =
−1

L
√
M

∑
ℓ∗

∑
m

uℓ∗ (m) log (ψℓ∗ (m)). (5.27)

Bear in mind that the loss is calculated considering the output of all L unfolded layers and not

only the last one. Also note that the use of (5.27) contrasts with the popular choice of the MSE

loss function [38]. Additionally, it is a well-known fact that the cross-entropy loss function is

more appropriate for classification tasks, as mentioned in Chapter 3.

5.3.4 Simplified DU-PDA

The model of the DU-PDA presented in the previous subsection can be simplified even further

if some assumptions are made. Therefore, a new variation of the proposed DU-PDA detector,

namely the simplified DU-PDA detector, is presented in this subsection. For this detector,

the calculations performed in (5.23) are simplified and the scalar 0.5σ2 is applied directly in

(5.22). The reasoning behind this approach lies in the asymptotic case, that is, when Nt →∞
and Nr →∞. For this case, the first term of (5.23) vanishes, since2

HTH→ I2Nt , (5.28)

and similarly for the second term we have

∥wℓH
T∥22 → 2Nt, (5.29)

which yields

COV [zℓ − a]→ [ϵℓ]+∥I2Nt − I2Nt∥22 +Ntσ
2

2Nt

→ 0.5σ2, (5.30)

wherein, for the sake of simplicity, the learnable parameter wℓ is omitted. This is analogous to

the channel hardening effect present in massive MIMO systems [40, 41], where values for Nt

and Nr are large. Although we demonstrate via computational simulations in Subsection 5.3.6

2We adopt the normalization of the channel matrix by 1/
√
Nr as is detailed in Subsection 5.3.6.
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that the simplified DU-PDA only presents marginal losses in performance, it is still unknown if

other similar architectures proposed in the literature [23, 38, 43, 68] are robust enough to allow

such simplifications.

5.3.5 Computational Complexity

According to the guidelines presented in Section 4.4, the global computation complexity of the

PDA detector is approximately given by

O(16N4
t + 8

√
MN3

t + 8N2
t (Nr +

√
M) + 4NtNr). (5.31)

However, if we let Nr ≫
√
M and simplify constants, then it can be written more compactly

as

O(N4
t +
√
MN3

t +N2
t Nr +NtNr). (5.32)

Note that O(8N3
t +16N2

t Nr +4NtNr) refers to the local cost of (5.8), where the inverse of G

costs O(8N3
t )

3 and O(16N4
t + 8

√
M(N3

t +N2
t )) is the complexity due to computing (5.11),

for which Ω−1
i costs O(8N3

t ) [44] per outer iteration in Algorithm 1.

Moreover, the DU-PDA detector has an approximate global complexity of

O(4LN2
t + 4LNt(4Nr +

√
M) + LNr). (5.33)

Considering again that all constants are simplified and that Nr ≫
√
M , simplifies (5.33) to

O(LN2
t + LNtNr + LNr). (5.34)

The global complexity is composed mainly by the local cost of (5.19), given by O(8NtNr) per

layer, and the local cost of (5.23), expressed byO(4N2
t +8NtNr+Nr) for each layer4. The NN

training stage cost is not taking into account when calculating the computational complexity

of the detection stage, since the training stage is assumed to be computed off-line as discussed

in Chapter 4. Nevertheless, in general, the backpropagation algorithm used for training NNs

has a complexity that scales linearly with the number of training samples, NTR, and training

iterations, say NTI. More importantly, it scales exponentially with the number of layers L

because of the chain rule derivatives calculated during backpropagation. In principle, this is

a high complexity when compared with the detection or forward-pass complexity, but once

trained, the NN based detector may serve multiple users during a prescribed timeline [27].

This means that the training complexity cost is distributed over time and users, whereas the

3For the sake of brevity, we assume that the inverse of a matrix, say X ∈ RN×N , is computed by the
well-known Gaussian elimination, whose cost is approximately O(N3).

4Note that the squared norm of a matrix X ∈ RM×N can be written as ∥X∥22 =
∑

∀i
∑

∀j X
2
i,j , thus

its cost is O(MN).
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detection complexity is fixed for each user and transmission cycle. Hence, since training is not

performed in the detection cycle, its complexity is not considered, enabling a fair comparison

with other detectors.

Furthermore, recall that the simplified form of calculation demonstrated by (5.30) reduces

even further the global complexity of the proposed DU-PDA detector. More specifically, the

global complexity of the simplified DU-PDA detector is given approximately by O(LNtNr),

meaning that the cost is reduced to one order-of-magnitude when compared to the DU-PDA

detector.

From the computational complexity associated with each detector, it is possible to con-

clude that the PDA is more complex than the proposed DU-PDA. More specifically, this cost

difference is due to the higher order term N4
t , included in the PDA global complexity. This is

expected because of the inversion of matrices performed by the PDA detector, which are not

necessary for both the DU-PDA and simplified DU-PDA detectors. Also notice that for both of

these detectors, the total number of layers L might significantly increase its global complexity.

It is demonstrated in Section 4.6, however, that this number is a multiple of Nt, thus still im-

plying in a lower global complexity for the DU-PDA when compared to the PDA. In fact, the

simplified DU-PDA complexity becomes even lower than that of the ZF in the aforementioned

case. Additionally, an optimal detection sequence, such as (5.16), is not a general requirement

for the DU-PDA, which further reduces its global complexity in relation to the PDA.

Despite shedding light on how detectors’ computational complexity compares to each

other, these are only asymptotic predictions of complexity. A detailed evaluation of system

end-to-end latency [20, 71], for example, is out of scope in this work. However, it can be ver-

ified for a typical 4 × 8 MIMO considered in Subsection 5.3.6, that the symbol detection (see

Line 15 of Algorithm 2) of the DU-PDA takes approximately 50 milliseconds in average with

neglectable variance. Note that this time value heavily depends on the implementation of the

proposed detector, which in this work is based on the TensorFlow library [72] not yet opti-

mized for a full-fledged hardware implementation. Indeed, implementations using hardware

description language (HDL) can provide a more reliable analysis on the end-to-end latency of

the proposed detector.

For convenience, Table 5.1 summarizes the global computational complexity for all detec-

tors of interest. Observe that the AMP detector and the sphere detector (SD) are also included

for the sake of completeness. For the AMP, NI refers to the number of iterations or updates

executed, whereas for the SD we considered the fixed-complexity SD [41, §VIII-D, p. 20],

since its performance is near–optimum.

To conclude, note also in Table 5.1 how the complexity of all detectors increase polyno-

mially with the number of transmitting antennas Nt. The exceptions, however, are the MLD

and the SD, whose complexity increases exponentially with Nt and
√
Nt, respectively, as ex-
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Table 5.1: Global computational complexity of detectors studied in this work. Note that they
are given in the most compact form and are also ranked in an ascending order, that is, from
less to more costly as lines progress to the bottom of the table.

Detector Global Computational Complexity

Simplified DU-PDA O(LNtNr)

Approximate Message Passing (AMP) O(NINtNr +NINt
√
M)

Zero Forcing (ZF) O(N3
t +N2

t Nr +NtNr)

Deep Unfolded PDA (DU-PDA) O(LN2
t + LNtNr + LNr)

Probability Data Association (PDA) O(N4
t +
√
MN3

t +N2
t Nr +NtNr)

Sphere Detector (SD) O(M
√
Nt)

Maximum Likelihood Detector (MLD) O(MNt)

pected. The asymptotic complexity behavior associated with such order-of-magnitudes are also

demonstrated in Figure 5.2, for which asymptotic complexity values are shown for the MLD,

PDA and simplified DU-PDA detectors, considering different values for the number of trans-

mitting antennas, Nt, and constellation sizes, M . Therefore, in Figure 5.2 (a) one can verify

that complexity values increase significantly faster for the MLD detector as both Nt and M

increase, in contrast with the polynomial increase rate presented in Figure 5.2 (b) and (c), as

expected. Moreover, observe in Figure 5.2 (c) that, although the simplified DU-PDA detectors’

complexity increases with rate similar to the PDA, still its maximum asymptotic complexity

value of 102 is two orders-of-magnitude smaller than the 104 shown in Figure 5.2 (b) for the

PDA detector.

5.3.6 Numerical Results and Discussion

Before presenting numerical results about the detectors performances, we list important system

parameters in the following subsection.

5.3.6.1 System Parameters

In this work the following system parameters are adopted: (i) before transmission, a frame of

nb data bits is encoded using the polar encoder [61] with a code rate of R < 1. Thus, nb/R

bits now represents the coded frame that is effectively transmitted; (ii) entries of the channel

frequency response matrix, H, are drawn from a complex Gaussian random process for all k

subcarriers at each transmission of an OFDM frame and are normalized by 1/
√
Nr. Hence, we

have Hi,j ∼ CN (0, 1/Nr) , ∀ i, j and, consequently, the system SNR per bit can be expressed
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Figure 5.2: Asymptotic complexity values for the MLD, PDA and simplified DU-PDA detec-
tors, considering Nt ∼ [4, 8] and M ∼ [4, 16]. Without loss of generalization, Nr = 1.
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as follows

Γk =
(√

MR
)−1 E

[
∥Hkak∥22

]
Nrσ2

, ∀ k, (5.35)

which is henceforward assumed to be identical for all subcarries.

The BER is employed for measuring coded detectors’ performances, which is obtained by

averaging bit decision errors over multiple Monte Carlo experiments. Each experiment is gen-

erated using a computational simulation that involves: (i) the generation of nb = 256 equiprob-

able data bits; (ii) the encoding of data bits by the polar encoder, resulting in a codeword of
256
R bits; (iii) mapping of coded bits into complex symbols ãk ∈ SNt for all k subcarriers;

(iv) transmission of the OFDM frame; (v) the generation of normalized channel coefficients

to form entries of the channel matrix Hk; (vi) the generation of complex AWGN samples

present in the receiver; (vii) the final decision in favor of the symbol coordinate associated

with the higher probability value; (viii) and the subsequent decoding of decided symbols into

bits via the polar decoder [73]. More specifically, we implement a tree-based architecture of a

successive-cancellation list decoding [74], with code rate equals to R.

For the sake of brevity, some algorithmic procedures5 were omitted from Algorithm 2.

However, it is worth mentioning that the DU-PDA training is performed considering that SNR

values are drawn from a uniform distribution U ∼ [min(SNR),max(SNR)], as discussed in

Subsection 4.6.1. Additionally, it was decided heuristically to use a total number ofNTR = 105

samples for training and also that the DU-PDA should include L = 4Nt layers6. More details

about the proposed DU-PDA hyperparameters can be verified in Table 5.2. These parameters

are used for all scenarios demonstrated in the next subsection.

Furthermore, note that in this work we employ hard decoding for all detectors analyzed.

However, in principle, soft decoding could also be integrated to the proposed DU-PDA since

soft outputs are available via (5.25) [66]. Nonetheless, for the proposed DU-PDA, the hard

decoding approach attains a better performance-complexity trade-off, which is more aligned

with the general aim of the work of proposing a low-complexity detector with affordable per-

formance losses. This also allows for a fair comparison with algorithms that provide hard

decoding sequences.

5.3.6.2 Performance Results

Figure 5.3 brings the uncoded detection performance for all detectors presented in Table 5.1,

considering a square 4×4 MIMO (Figure 5.3 (a)) system and a underloaded [41] 4×8 MIMO

5As mentioned earlier, we used the TensorFlow library [72] to implement a customized deep un-
folded NN model.

6It was verified that the PDA algorithm converges within an average of 2 convergence iterations in
Algorithm 1 (with ϵ = 10−3), for all scenarios of interest. Therefore, there is no loss of generality when
comparing both detectors costs in the context of results presented in this section.
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Table 5.2: Hyperparamenters of interest for the proposed DU-PDA.

Hyperparameters Values

Training set size 105 samples

Layers L = 4Nt

Input dimension R2Nr , R2Nr×2Nt , R2Nt×
√
M , R2Nt

Output dimension R2Nt×
√
M

Number of learnable parameters #{wℓ}∀ℓ = 4Nt

Activation function softmax (·) , ∀ℓ
Learning rate 10−3

Solver Adam
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Figure 5.3: Performance of the ZF, AMP, DU-PDA, PDA, MLD and SD detectors for the
uncoded MIMO system. The scenario of (a) 4 × 4 MIMO is illustrated, followed by the (b)
4× 8 MIMO, both considering the QPSK modulation.

(Figure 5.3 (b)), all of which employ the quadrature phase shift keying (QPSK) (M = 4)

modulation. The detection performance is given as a function of multiple SNR values and it

is defined as the probability of occurrence of any error in the received symbol vector. This is

done because bits are not encoded for the scenarios analyzed in Figure 5.3.

Firstly, observe in Figure 5.3 (a) that the performance of the PDA detector adheres closely

with that reported in the seminal work of [44], thus validating the simulation model. Moreover,

notice that the DU-PDA detector has shown a prohibitive performance for the 4 × 4 MIMO

scenario, which was also verified to be the case for other square MIMO systems. However,

for the underloaded scenario demonstrated in Figure 5.3 (b), where Nr ≫ Nt, the DU-PDA

detector presents better performance. All the same, if the relative performance of the DU-PDA

against the ZF and, particularly, the AMP detectors are taken into account, then Figure 5.3

(a) and (b) shows that the DU-PDA outperforms these detectors for most of the SNR range
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Figure 5.4: Performance of the ZF, AMP, simplified DU-PDA, DU-PDA, PDA and MLD
detectors for the coded MIMO system. The scenario presented is of the (a) 4 × 8 MIMO with
a code rate of R = 1/2 and QPSK modulation, followed by the (b) 4 × 16 MIMO also with
R = 1/2 and considering now the 16-QAM modulation. Note that we have omitted the SD
curves here because it achieves the MLD performance.

analyzed, while presenting a comparable detection complexity7. It was verified, however, that

for the underloaded scenario of 4 × 8 MIMO, the DU-PDA detector reaches a performance

floor of P (â ̸= a) ≈ 3 × 10−3, from which no improvement can be obtained irrespective of

how high are the SNR values.

This motivated the integration of the Polar encoder as described in Subsection 5.3.6.1,

also with a aim at potentially improving the proposed DU-PDA performance relative to other

detectors. Note in Figure 5.4 (a) that the 4 × 8 MIMO scenario is illustrated again as in

Figure 5.3, however, considering now the Polar encoding with a code rate of R = 1/2. This

is accompanied by the Figure 5.4 (b), for which the 4 × 16 MIMO scenario with a 16-QAM

(M = 16) modulation is presented, considering the same aforementioned code rate.

We begin by pointing out that the performance floor observed in Figure 5.4 (a) and (b),

although undesirable, it is not so much detrimental to the overall performance as in Figure 5.3

(b). This happens because the introduced channel coding improves the performance for all

the SNR range under analysis. Therefore, the BER values where the DU-PDA is better than

the ZF and AMP, consist of the more interesting region of values for which SNR < 10 dB.

Granted that the performance floor is still present in Figure 5.4 (a) and (b), but now at low

values of BER ≈ 2× 10−4 and BER ≈ 2× 10−5, respectively. These observations support the

conjecture that the uncoded DU-PDA detector is interference limited for high SNR values. In

this SNR range the distribution of (5.19) ceases to be approximately Gaussian because of the

7Note here that we consider L = 4Nt as stated in Subsection 5.3.6.1, making N3
t the highest order

term within the DU-PDA complexity. Additionally, we also considered NI = 50 [43, §IV-A, p. 5]
for the AMP detector, which clearly implies NI ≫ Nt and, consequently, also a highest cubic order
polynomial.
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low AWGN levels and becomes defined in most part by the non-Gaussian IAI distribution. This

in turn violates the Gaussian distribution assumption mentioned in Subsection 5.3.1, regarding

the PDA detector, which is the underlying algorithm of the proposed DU-PDA detector. Hence

we have the performance floor shown in Figure 5.3 (b), but which is partially mitigated by a

robust coding scheme in Figure 5.4. Furthermore, to elaborate on the detection performance of

the AMP detector in Figures 5.3 and 5.4, one can see that this detector suffers from a severe

performance floor for high SNR. This behavior is also explained by the reasoning described

for the DU-PDA, which means that the violation of the Gaussian distribution assumption also

severely affects the AMP detection performance [75].

Moreover, note also that Figure 5.4 depicts the detection performance of the simplified

DU-PDA detector. For this detector, the calculations performed in (5.23) are simplified, yield-

ing (5.30). Although the dimensions of MIMO systems illustrated in Figure 5.4 are not large,

numerical BER results presented here show that conclusions from Subsection 5.3.4 may still

hold for a small number of antennas. Note in Figure 5.4 that the detection performance of the

simplified DU-PDA detector is practically identical to the DU-PDA detectors’ performance,

except at the high SNR region where the the simplified DU-PDA is marginally worse than the

DU-PDA detector.

Finally, note also that the simplified DU-PDA complexity becomes even lower than that of

the ZF and AMP detectors, especially when the number of L = 4Nt layers used is considered.

This makes the simplified DU-PDA detector the less costly of all detectors analyzed in this

work, as can be verified in Table 5.1. Yet it performs approximately 2 dB better than the ZF

in Figure 5.4 (a), for values of SNR < 10 dB, for example. More importantly, the simplified

DU-PDA largely improves upon the performance of the AMP detector, in spite of using similar

operations as described in (5.19).

Additionally, Figure 5.5 (a) shows the performance of relevant detectors for the 8 × 16

MIMO scenario considering the QPSK modulation. Figure 5.5 (b) in turn illustrates detectors

performances, also considering the QPSK modulation, for multiple values of transmitting an-

tennas, Nt, for which the number of receiving antennas, Nr = 12, and the SNR = 7 dB, are

fixed. Note that for this scenario we still assume the number of layers, L, of the DU-PDA

detector, to be restrained by Nt, such that L = 2cNt. This is adopted since each layer in the

DU-PDA architecture outputs the posterior associated with one transmitted symbol, a byprod-

uct of the underlying PDA algorithm employed by the DU-PDA detector. However, we verified

through experiments that for c > 2 no improvement was obtained in detection performance,

yet at the cost of increased training and detection complexity. Therefore, the value L = 4Nt

defined in Subsection 5.3.6.1 was shown to be the most suitable one.

In Figure 5.5 (a), it can be observed with the larger MIMO system that the proposed sim-

plified DU-PDA detector outperforms the ZF detector, particularly for the low BER < 10−3
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Figure 5.5: Performance of the ZF, simplified DU-PDA and PDA detectors for the coded
(R = 1/2) MIMO system. The fixed (a) 8 × 16 MIMO and the varying (b) Nt × 12 MIMO
scenarios are analyzed considering the QPSK modulation.

region. It is important to remark that for higher values of SNR the performance floor of the

coded simplified DU-PDA is still present, remaining, however, at low BER values of approxi-

mately 10−5. Moreover, note that the simplified DU-PDA performance becomes worse relative

to the PDA detectors’ performance as the SNR values get higher, but recall that the simplified

DU-PDA presents the lowest complexity (see Table 5.1). In addition to that, Figure 5.5 (b)

shows that the simplified DU-PDA detector performance varies approximately linearly with

the number of transmitting antennas Nt, while the performance of the ZF detector changes

more abruptly with Nt. This means that the proposed simplified DU-PDA detector not only

outperforms the more complex ZF, but it is also more robust for all considered MIMO system

dimensions, assuming a target BER of 10−3.

5.4 Lattice Reduced Aided PDA Detector

From Subsection 5.3.6, it becomes evident that IAI can be considered one of the main causes

of performance limitations presented by the proposed DU-PDA detector. This limitation mo-

tivated the search for solutions that could mitigate such undesired effects, with a view to po-

tentially improve the detection performance of detectors based on the PDA. Therefore, we

propose an enhanced PDA detector based on LR techniques [45]. In summary, LR consists

of operations that improve the properties of basis functions that form a lattice, which in the

context of this work is represented by the channel matrix. Additionally, we analyze results

considering large square (Nt = Nr) MIMO systems in contrast to the underloaded (Nr ≫ Nt)

systems presented in previous discussions. To the best of author knowledge, this is the first

proposition that endeavors to combine LR algorithms with the PDA detector.
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5.4.1 Principles of Lattice Reduction

It is desirable that the Gram matrix, G (see 5.13), should approximate to an identity matrix, re-

sulting in null IAI, which can be considered one of the main causes of performance limitations

presented by MIMO detectors. To that end, the LR technique is leveraged to improve the chan-

nel matrix (a lattice) properties and, consequently, reduce the IAI. A lattice is represented by a

basis, say B = (b1,b2, . . . ,bm), such that any lattice point can be written as a superposition

of integer multiples of the basis vectors bi. Thus, let B = H and the noiseless received signal

at each subcarrier be written as

A (H) = A (h1,h2, . . . ,h2Nt) =

2Nt∑
j=1

hja (j − 1), (5.36)

wherein hj ∈ R2Nr represents the jth column of the channel matrix, H, a (j − 1) denotes

the (j − 1)th entry of the transmitted symbol vector and A (H) denotes the real-valued lattice.

Therefore, the noiseless received signal can be understood as a periodic arrangement of discrete

points, that is, a lattice, for which basis vectors are given by the channel matrix [45, 76].

An improved lattice A(Ḣ) is obtained by operating the basis vectors (or channel matrix)

with an unimodular transformation matrix T [76]. This operation is called LR, and it is im-

plemented using algorithms such as the proposed by Lenstra, Lenstra, Lovász (LLL) [45], for

example. Crucially, this unimodular transformation does not change any lattice points and,

consequently, A (H) ≡ A(Ḣ) since

A(Ḣ) = HT︸︷︷︸
Ḣ

u︷ ︸︸ ︷
T−1a . (5.37)

However, the aforementioned statement holds if and only if the vector of trans-

mitted symbols, a, stems from the infinite integer space Z2Nt [76]. It can be

easily verified that this condition is satisfied by rewriting the set of coordinates

from the M -QAM constellation, S2Nt , such that S2Nt = 2E0(D2Nt + 0.5 · 12Nt), where

D = {−
√
M/2,−

√
M/2 + 1, . . . ,

√
M/2− 1} ⊂ Z. This means that the M -QAM constel-

lation is a shifted (translated) and scaled version of the integer set D. Note that this is a valid

representation given that lattice points are also unchanged with shifting and scaling opera-

tions [76, appx., p. 113]. This same reasoning could be applied to other constellations as long

as their coordinates may be described by a valid lattice basis B.
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5.4.2 LR Applied to the PDA Detector

The latticeA(Ḣ) is improved in the sense that its basis vectors have a greater degree of mutual

orthogonality than the ones constituting A (H), thereby minimizing the IAI introduced on the

received signal. This advantage can be directly observed for the lattice reduction aided zero

forcing (LRA-ZF) equalizer, which assuming the preprocessing from (5.37), lead us to

z = Ḣ†r = u+ Ḣ†n. (5.38)

Notice that the pseudoinverse, Ḣ†, is referenced to the LR channel matrix, implying in a re-

duced noise enhancing because of the increased orthogonality among the columns of Ḣ. How-

ever, the possible values for u = T−1a are not readily available, requiring modifications on

the component-wise slicer or quantizer used for detecting symbols from equalized signals.

Recall that this quantizer simply finds the vector in S2Nt closest to z. For the LRA-ZF,

however, we perform the following chain of operations to obtain the detected symbol vector,

given by

ẑ = 2E0

T

⌊
z

2E0
− 0.5T−112Nt

⌉
︸ ︷︷ ︸

z̄

+ 0.5 · 12Nt

 , (5.39)

where the quantization is now referenced to the known infinite integer space, since operations

inside the rounding operator ⌊·⌉ assure that z̄ ⊂ Z2Nt . The remaining operations map the

quantized symbols to the original discrete domain S2Nt of the M -QAM constellation. How-

ever, note that it is possible for ẑ /∈ S2Nt due to shaping problems [45]. A simple solution

consists in requantizing (clipping) ẑ with respect to S2Nt , despite causing a sensible perfor-

mance degradation for small constellation sizes.

Considering these modifications for the LRA-ZF, a similar reasoning can be applied

to the PDA detector presented on Subsection 5.3.1. The proposed lattice reduction aided

probability data association (LRA-PDA) detector then evaluates the probabilities given by

Pm(ū(i) = q̄m | z̄, {p̄j}∀j ̸=i), where now q̄m ∈ ZK represents an element from the set of

K nearest integers to z̄(i); letting m ∈ {0, 1, . . . ,K − 1} and ū ⊂ Z2Nt . Important to note

that, for the PDA detector, probabilities are directly associated to coordinates of the M -QAM

constellation, since qm ∈ S. Therefore, associating the probabilities to the truncated integer

space q̄m, is a key step to properly adapt the PDA algorithm to lattice reduced signals.

In Algorithm 3, we present the steps executed for symbol detection in the proposed

LRA-PDA detector.

Notice that the computed probabilities p̄i ∈ RK , ∀ i, are still associated to the integers

from ZK . However, bear in mind that the final decision is made taking into account coordinates
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Algorithm 3 The LRA-PDA detector
Require: A(Ḣ) via (5.37) and z̄ as in (5.39)
Require: ki (see (5.16)), ϵ > 0
Ensure: p̄i (m)← 1

K
, ∀m ∀ i

1: repeat
2: for i = 1, 2, . . . , 2Nt do ▷ outer iteration
3: p̄′

i ← p̄i

4: Compute µki
(5.12) and Ωki (5.13) with

5: {p̄j}∀j ̸=ki and q̄
6: for m = 1, 2, . . . , K do ▷ inner iteration
7: Calculate αm (ki) (5.11)
8: Evaluate Pm(ū(i) = q̄m|z̄, {p̄j}∀j ̸=i) ≈ p̄ki (m)
9: end for

10: end for
11: until |p̄i − p̄′

i| ≤ ϵ, ∀ i ▷ convergence iteration
12: li ← argmax

m
{p̄i (m)}, ∀ i

13: z̄(i)← q̄li , ∀ i

from the discrete set S. Therefore, an extra operation is necessary, where integer elements

associated with the highest probabilities in p̄i are mapped to the discrete domain S and clipped,

as already demonstrated in (5.39).

5.4.3 Numerical Results and Discussion

Similar to Subsection 5.3.6.1, here entries of H̃ are drawn from a complex Gaussian random

process for all k subcarriers at each transmission of an OFDM frame and are normalized by

1/
√
Nr. Hence, we have H̃i,j ∼ CN (0, 1/Nr) , ∀ i, j and, consequently, the system SNR per

bit can be expressed as follows,

Γk =
E
[
∥Hkak∥22

]
Nr

√
Mσ2

, ∀ k, (5.40)

which is henceforward assumed to be identical for all subcarries. Note that the LR performed

at the transmitter does not alter any property neither of the channel matrix nor of the M -QAM

constellation, that way no parameter accounting for this operation need to be included in the

SNR calculation.

Recall that the probability of symbol vector error, P (â ̸= a), represents the performance

metric of detectors studied in this chapter. It is obtained via computational simulation of mul-

tiple Monte Carlo experiments whereby an average of decision errors is estimated. Note also

that the chosen algorithm for computing T is the LLL, configured with δ = 3/4 [45, 76]. Fur-
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Table 5.3: Global computational complexity of detectors studied in this work. Note that they
are ranked in an ascending order, that is, from less to more complex as lines progress to the
bottom of the table.

Detector Global Computational Complexity

V-BLAST (PIC) O(2N3
t + 5

2
N2

t Nr + 2NtNr)

PDA O(N4
t +
√
MN3

t +N2
t Nr +NtNr)

LRA-PDA O(N4
t +KN3

t +N2
t Nr +NtNr)

MLD O(MNt)

thermore, we define the infinite integer space to be truncated for a total of K = 8 elements for

all scenarios analyzed, since increasing it did not result in any significant improvement.

5.4.3.1 Computational Complexity

There are in the literature [45] several investigations concerning the global complexity of dif-

ferent algorithms used for obtaining T. Notice that the bulk of operations is implemented at

the transmitter, because (5.37) is computed before transmission. However, in this work, the

main concern is the complexity at the receiver side. In this case the complexity of the pro-

posed LRA-PDA detector is similar to that resulted from the PDA (see Subsection 5.3.5), since

additional operations introduced by our proposal does not change significantly the detection

complexity at the receiver. Nevertheless, it is important to mention that the global complexity

of the proposed LRA-PDA still increases polynomially8 with Nt, making it less complex than

the MLD.

More specifically, the computation complexity of the LRA-PDA detector is approxi-

mately given by O(N4
t + KN3

t + N2
t Nr + NtNr) per convergence iteration. Note that

O(16N4
t + 8K(N3

t +N2
t )) is the complexity due to computing (5.11), recall also that Ω−1

i

costs O(8N3
t ) per outer iteration in Algorithm 3. It was verified that the LRA-PDA algorithm

converges within an average of less than 2 convergence iterations in Algorithm 3, considering

ϵ = 10−3 and P (â ̸= a) < 10−2, for all scenarios of interest. Therefore, for the sake of

simplicity, we assume the aforementioned complexity per convergence iteration to be equiva-

lent to the global complexity of the LRA-PDA detector. Additionally, as will be unveiled in

Subsection 5.4.3.2, we also consider the V-BLAST [41] detector besides the PDA and MLD

detectors, as another benchmark available for comparison. Assuming that the parallel inter-

ference cancellation (PIC) scheme is used by the V-BLAST detector, then its computational

complexity can be shown to be approximately O(2N3
t + 5

2N
2
t Nr + 2NtNr). Table 5.3 details

the global computational complexity of all detectors of interest. On a final note, observe that

8A similar reasoning to that resulted from Figure 5.2 can also be applied here, and thus, for the sake
of brevity, asymptotic complexity values are now omitted.
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Figure 5.6: Performance of the PDA, LRA-PDA, V-BLAST and MLD detectors. The scenario
presented is of the (a)-(b) 16-QAM and (c)-(d) 64-QAM modulations, respectively (for Nt =
Nr = 4, 16, 32 MIMO).

the V-BLAST detector is an order-of-magnitude less complex than the LRA-PDA detector.

However, as will become clear in Subsection 5.4.3.2, this was expected given the LRA-PDA

detector performance superiority over the V-BLAST detector.

5.4.3.2 Performance Results

Figure 5.6 (a) and (c) present performance curves of the MLD, V-BLAST, PDA and LRA-PDA

detectors, as a function of the SNR, for the small-scale square 4×4 MIMO, whereas Figure 5.6

(b) and (d) shows the performance for square 16×16 and 32×32 MIMO systems, respectively.

In Figure 5.6 (a) and (b) the 16-QAM modulation is considered, whereas in Figure 5.6 (c)

and (d) the 64-QAM modulation is analyzed. Note, however, that the MLD performance for

the 32 × 32 MIMO using 64-QAM is absent, since it demonstrated to be far too complex to

simulate.

It can be verified in Figure 5.6 (except for 32 × 32 MIMO in Figure 5.6 (b)) that the

proposed LRA-PDA detector improves upon the performance of the PDA detector, particularly
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Figure 5.7: A symbol from the QPSK constellation (black circle) is received, where shaded
areas illustrate possible detection errors. (a)-(b) Depict the LR transformation for low SNR
regions, whereas (c)-(d) illustrate this transformation for the mid/high SNR region.

for the SNR range that leads to P (â ̸= a) < 10−2. More specifically, note how the slope of

the LRA-PDA performance curve is similar to the obtained by the MLD. This is a consequence

of the reduced IAI present on LRA-PDA detection, as discussed in Subsection 5.4.2.

Therefore, in Figure 5.6 (b) the proposed LRA-PDA detector outperforms the PDA for ap-

proximately SNR > 21 dB, considering the 16 × 16 MIMO, which is denoted as a crossing

point. This crossing point is maintained for the scenario of 16 × 16 MIMO in Figure 5.6 (d),

but here the SNR range under analysis contains higher values, given the high modulation order

(M = 64). Consequently, in this scenario the proposed LRA-PDA detector shows a significant

improvement over the PDA detector for the SNR range of interest. Although the crossing point

keeps unchanged with the modulation order M , it moves towards higher SNR values as the

number of antennas is increased for the square MIMO system. Note in Figure 5.6 (d) that for

the 32 × 32 MIMO, the LRA-PDA detector outperforms the PDA only for SNR > 29 dB,

approximately. Also observe in Figure 5.6 (a) and (c) that the crossing point is at approxi-

mately 15 dB, meaning that it indeed moves to lower values of SNR as the number of antennas

diminishes or vice-versa. This moving crossing point might be partly due to the suboptimal

strategy chosen for dealing with the shaping problems introduced by the LR at transmission

(see (5.39)). To elaborate, Figure 5.7 (a) depicts the area where a given received symbol might



Chapter 5 5.5. Conclusion 71

be dispersed with some probability. The area has an ellipsis format because of the weighing of

the channel matrix basis functions on the AWGN noise vector (noise enhancing effect). How-

ever, with the aid of the LR, this ellipsis approximates to a circularly symmetric noise as in

Figure 5.7 (b), given that the channel matrix is more orthogonal now. Recall also that the LR

operation changes the general shape of the constellation, as indicated by the parallelogram in

Figure 5.7 (b) compared to the typical square in Figure 5.7 (a). We conjecture that at low SNR

regions, the LR-aided scenario with circle dispersion, combined with the distorted constella-

tion, affects more neighboring symbols (Figure 5.7 (b)) than the classical scenario in Figure

5.7 (a), hence the increased detection errors and worse performance. On the other hand, Figure

5.7 (c) and (d) illustrations present the mid/high SNR region. In Figure 5.7 (d) is possible to

verify that the increased degree of orthogonalization provided by the LR, that is, circle disper-

sion area, starts to show a favorable performance trade-off despite the constellation shaping

problems. However, notice in Figure 5.6 (a) and (c) that these behaviors are less present for

small-scale MIMO, as expected. This happens because the lattice A(Ḣ) contains fewer points

when compared to MIMO systems with more transmitting antennas. Therefore, the perfor-

mance trade-off due to the noise and constellation geometries become insignificant, since there

are far less neighboring symbols to impact.

In summary, the performance of the proposed LRA-PDA for small-scale 4 × 4 MIMO in

Figure 5.6 (a) and (c) is the most attractive one in the sense that it outperforms the PDA for

practically all the SNR range under analysis. Furthermore, for practically all the remaining

scenarios, it can be also verified in Figure 5.6, that the LRA-PDA is better than the PDA for

SNR values where P (â ̸= a) < 10−2.

5.5 Conclusion

In this chapter we proposed a novel detector for MIMO systems based upon the deep unfolded

architecture for NNs, namely the DU-PDA detector. This detector unfolds iterations of the PDA

algorithm in its layers, enhancing the model-driven PDA detector with the aid of its data-driven

architecture.

Furthermore, we also proposed a novel detector for MIMO systems that leverages LR tech-

niques to improve the PDA detector presented in Subsection 5.3.1. In the proposed LRA-PDA,

the noiseless received signal is seen as a periodic arrangement of discrete points, which allows

for LR algorithms to improve its properties; particularly the orthogonality degree of its basis

vectors. This in turn reduces the IAI in the received signal, thereby improving the final detec-

tion performance of the LRA-PDA detector in comparison to the PDA detector for SNR ranges

that lead to P (â ̸= a) < 10−2.

It was shown that the DU-PDA detector, as well as its simplified form, outperforms both the
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AMP and ZF detectors, considering most of the SNR range evaluated. This can be particularly

verified, for instance, in coded detection for the 8 × 16 MIMO system. However, the global

computational complexity of the simplified DU-PDA detector is orders-of-magnitude less than

the ZF detector. Furthermore, the lack of matrix inverses computations in the DU-PDA archi-

tecture not only reduces its cost, but also simplifies its implementation in practical systems.

This is the case when, for example, channels are correlated, increasing the condition number

of G and making impractical its inverse computation.

In the sequence, it was shown via computational simulations that the proposed LRA-PDA

detector achieves a similar level of diversity than that of the optimum MLD, considering large

square MIMO systems. Consequently, it was also verified that the LRA-PDA detector achieves

considerably higher diversity gains compared to the PDA detector, specially in scenarios with

large constellation sizes. To conclude, observe that the proposed LRA-PDA is an interesting so-

lution for scenarios where dense constellations and small-scale MIMO systems are employed.

Also, note that the computational complexity of the LRA-PDA detector is comparable to the

PDA detector and, consequently, significantly lower than the MLD complexity.
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Conclusion and Open Challenges

In this work, firstly a communications scheme was proposed that promoted the use of CS and

NNs (defined as CL) for detecting samples of SS in the CR context. With the aim of identifying

spectrum access opportunities, the proposed NND demonstrated to be an interesting alternative

to well-established detectors, such as the MLD. More specifically, the NND presented a lower

computational complexity, being orders-of-magnitude less costly than the MLD. Moreover,

the NND showed robustness in practical scenarios as, for example, when the CSI is not perfect

at the receiver and also when mismatches were observed in the channel delay profile and in

its statistics. It was shown that the NND has large generalization capacity for different fading

scenarios between training and detection stages, whereas poorer performances were presented

by the NND, the greater were deviations on the path delays at training stage relative to the

actual ones in the detection stage.

However, only SISO systems were considered in the aforementioned proposed scheme.

This constitutes a problem given that MIMO systems are becoming ubiquitous in communica-

tion systems nowadays. With this in mind, we proposed a data-driven detector for MIMO-

OFDM systems that leverages classical model-driven detectors from the MIMO literature.

Striving for obtaining the same advantages as observed in the NND, the DU-PDA detector

was proposed for the detection of uncompressed M -QAM symbols. Numerical results demon-

strated that its performance is close to the optimum MLD for MIMO but with a considerably

lower computational complexity. In fact, the proposed simplified DU-PDA detector achieved a

remarkable computational complexity that grows with the square of the number of transmitting

antennas, whereas the MLD complexity increases exponentially withNt. Additionally, we also

proposed a novel modification for the PDA detector, denoted as LRA-PDA, whose aim was to

reduce the IAI at detection. It was shown that, thanks to the LR at transmission, the diversity

achieved by the LRA-PDA was comparable to that of the MLD, particularly for small-scale

MIMO systems.
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For future investigations it would be interesting to combine data-driven solutions based

on ML algorithms and NNs with the LRA-PDA, so as to reduce the global computational

complexity. Moreover, the incorporation of CL as seen in Chapter 4, for example, could also

reduce complexity and might contain interesting open challenges, such as defining the best

sensing matrix (see (2.1)) taking into account the LR operation at the transmitter. Another

open question is if the performance of the LRA-PDA could also be improved, specially at the

low SNR region, with the adoption of channel coding. Note also that a theoretical analysis

of the LRA-PDA algorithm convergence is still an open problem and could be an interesting

subject for future research.

Furthermore, the use of an online training framework for the proposed NND could po-

tentially improve its generalization capacity, specially under training dataset mismatches, and

thus consists of an interesting topic for future discussions. Also, in future works, it might be

of interest to increase the scenarios and dimensions of MIMO systems analyzed, by increas-

ing the number of transmitting and receiving antennas; also evaluating practical underloaded

and square MIMO systems alike. Moreover, the integration of soft decoding to the proposed

DU-PDA can improve its performance and can be regarded as a natural progression of the re-

search done in this work. Finally, given the flexibility of the deep unfolding architecture, we

maintain that other MIMO detection schemes could benefit greatly from the principles laid out

in this work.

To conclude, indeed data-driven solutions are often times inaccessible, because of the black

box nature of the algorithms and mechanisms involved in the NND, for example. This can

become a critical problem, specially concerning signal detection, where analytic models are

largely adopted and well-established detectors are preferred. Therefore, it may be interesting

to propose in the future explainable artificial intelligence (XAI) algorithms [77, 78], so that

performance requirements could be precisely fulfilled, even when the training conditions are

not ideal. In this way, the unpredictability of data-driven algorithms could be mitigated, also

for scenarios where some statistics and patterns may not be present at training. In other words,

one of the major setbacks for large scale adoption of ML and NNs in communication system

could be potentially overcome.
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