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Resumo

As futuras redes móveis fornecerão uma ampla variedade de novas aplicações e
casos de uso. Neste contexto, será impulsionada uma demanda significativa de taxa
de dados e confiabilidade para que sejam suportados todos os novos serviços emer-
gentes. Muitos destes serviços apresentam requisitos distintos, o que pode levar a
decisões divergentes a serem tomadas de acordo com um mesmo indicador. Por exem-
plo, definindo os parâmetros da camada fı́sica de modulação e codificação através do
ı́ndice Modulation and Coding Scheme, esta opção do sistema deve resultar em uma
quantidade de erros inferior a uma condição limite quando o requisito é confiabilidade.

Por outro lado, se o serviço demandar uma alta taxa de dados, o ı́ndice MCS deve
estar o mais próximo possı́vel do ponto de maior eficiência espectral que ainda atinge
uma meta máxima de taxa de erros menos severa. Mas em quaisquer dos casos, o
indicador precisa de uma estimativa muito precisa do estado real do enlace. O indi-
cador elementar é, então, a medida que representa o grau de interferência e de ruı́do
em relação ao sinal enviado.

Dado que o cálculo deste indicador elementar ainda necessita de melhorias nos atu-
ais métodos que têm sido utilizados, uma estratégia que se apresenta é o da implementação
de um indicador complementar que gere uma informação, não somente mais precisa,
mas também que considere todos os elementos presentes nos processos de recepção do
sinal. Para uma aproximação maior do que se pode chamar de estado da arte, torna-se
claro que devem também ser levadas em conta as particularidades de implementação
em termos de algoritmos de processamento de sinais, caracterı́sticas de hardware,
quantização e tantos outros fatores presentes no processo de recepção.

Ainda assim, o controle na tomada de decisões é complexo, pois envolve o geren-
ciamento de vários usuários sendo adicionados e deixando o sistema a todo momento.
Além disso, há cada vez mais uma heterogeneidade maior de serviços e diferentes de-
mandas a serem acomodadas. De posse do maior número possı́vel de informações, é
possı́vel melhor implementar o que é chamado de adaptação de enlace.

Para a melhor eficiência da adaptação do enlace, este trabalho tem como pilares
estes três tópicos, propondo estratégias para cada um deles: uma proposta para a mel-
horia da estimação do indicador elementar (relação sinal-ruı́do), a criação de um in-
dicador complementar e propostas mais sistêmicas para o controle propriamente dito.
Além disso, a pesquisa por métodos visando o aumento de precisão e de eficiência
apontou como principal estratégia a utilização de técnicas de aprendizado de máquina,
que têm demonstrado notáveis resultados nas mais diversas áreas.

Palavras-Chave: Adaptação de Enlace, Codificação e Modulação adaptativa, 6G,
Aprendizado de Máquina, Confiabilidade.
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Abstract

Future mobile networks will provide a wide variety of new applications and use
cases. In this context, a significant demand for high data rate and reliability will be
driven to support all new emerging services. Many of these services have different
requirements, which can lead to divergent decisions being taken according to the same
indicator. Using the modulation and coding parameters defined by the Modulation and
Coding Scheme (MCS) index as an example, the system option must result in a number
of errors lower than a limit condition when the requirement is reliability.

On the other hand, if the service demands a high data rate, the MCS index must be
as close as possible to the point of highest spectral efficiency that still reaches a less
severe maximum target of error rate. But in either case, the link status indicator needs
a very accurate estimation. The elementary indicator is the measure that represents the
interference level and noise compared to the sent signal.

Since the calculation of this elementary indicator still requires improvements in the
current methods, a strategy presented in this work implements a complementary indi-
cator that generates not only more precise information but also considers the imper-
fections of all processes involved in the signal reception. In the pursuit of state-of-the-
art, it is clear that the implementation particularities in signal processing algorithms,
hardware characteristics, quantization, and many other factors present in the reception
process must be included.

Moreover, the decision-making process is also a complex task as it involves man-
aging multiple users being added and leaving the system at any given time. In this
scenario, there is an increasing heterogeneity of services and different demands to be
accommodated. With as much information as possible, the process called Link Adap-
tation (LA) can be appropriately implemented.

For the best efficiency of link adaptation, this work is based on these three topics,
presenting strategies for each one of them: a proposal for improving the estimation of
the elementary indicator (signal-to-noise ratio), the creation of a complementary indi-
cator and more systemic considerations for the control itself. In addition, the research
looking for methods to increase precision and efficiency brought the employment of
machine learning techniques as a primary strategy, which has shown remarkable results
in many diverse areas.

Keyords: Link Adaptation, Adaptive Coding and Modulation, 6G, Machine Learning,
Reliability.
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Chapter 1

Introduction

THE primary use cases of digital mobile networks were introduced by the Sec-
ond Generation of Mobile Networks (2G), where services were mainly based

on voice, short messages, and some very latent internet services, like e-mail and rudi-
mentary browsers. From the Third Generation of Mobile Networks (3G) on, the data
rate increased significantly, providing access to high-speed mobile internet. The use
cases advanced to services like video calling, streaming, and social media access. The
Fourth Generation of Mobile Networks (4G) boosted the throughput to rates that en-
abled high-speed download and upload of data, creating conditions for high-quality
video for streaming and online games, high-quality voice calls, cloud-based applica-
tions, video conferencing, and others.

The Fifth Generation of Mobile Networks (5G) is providing technologies to in-
crease reliability, lower latency, and higher bandwidth. Thus, many more assorted
new applications and services are coming, like the implementation of systems for au-
tonomous vehicles, smart cities, factories, and the Internet of Things (IoT). Based
on this scenario, the concept of Network Slicing, brought out successfully by the 5G
specifications, is an important direction to properly fulfil the newly demanded services
and their distinct and rigorous requirements. As a projection of this environment, the
services were structured into three use cases: enhanced Mobile Broadband (eMBB),
massive Machine Type Communications (mMTC), and (Ultra Reliable Low Latency
Communications (URLLC).

Briefly, eMBB allows for high-speed access to multimedia resources with moder-
ate latency, and mMTC provides connectivity to an extensive number of devices with
lower concerns about delays. For the case of URLLC, there is a critical communi-
cation characteristic where stringent requirements are necessary for both latency and
reliability. For this reason, correctly determining error rate boundaries for the different

1



Chapter 1 2

link configurations is a mandatory undertaking.

As expected, another aspect of the operation in these conditions is a very low error
rate. This is a challenging requirement since the determination of limits where errors
start to happen generally depends exactly on the occurrence of bit errors. In addition,
indicators must be fast and precise to report the current quality status and provide the
necessary information to make decisions and predictions. Therefore, accurate and fast
indicators are essential elements to the best accomplishment of all expected services.

Taking all these aspects into account, the system has to control the parameters to
meet the requirements consistently in a process known as Link Adaptation (LA). The
most important parameter to be determined by this mechanism is the Modulation and
Coding Scheme (MCS) index, and its selection is made by a process called Adaptive
Coding and Modulation (ACM).

The MCS index refers to a combination of modulation and forward error correction
(FEC) parameters that provide a balanced distribution of data rates and robustness. The
appropriate index choice depends on a previous mapping of Signal-to-Interference-
plus-Noise Ratio (SINR) and its correlation with the Bit Error Rate (BER) for each
MCS curve.

As the receiver performs the measurements, the information about the channel state,
or Channel Quality Indicator (CQI), is sent to the Base Station (BS) via the Channel
State Information (CSI) control signal. Considering this prognostic and based on the
information about the type of service the user needs, the BS takes its decision.

Figure 1.1 illustrates a simplified diagram of a Mobile Network and the Link Adap-
tation (LA) context.

Figure 1.1: Mobile Network System Overview.
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Divergent decisions can be addressed according to the same indicator. For instance,
the selected MCS index must result in an error rate that is lower than an error-free limit
condition when reliability is the main requirement. On the other hand, if the service
demands throughput, this index has to be as close as possible to the highest spectral
efficiency point that still achieves the maximum target BER. But in both cases, a
channel state indicator needs a very accurate SINR estimation.

Since the measure of the SINR can present inaccuracies and delays, some workaround
has been applied to guarantee the appropriate functioning of LA. A current strat-
egy is an implementation of internal feedback control, or Inner Loop Link Adapta-
tion (ILLA), complemented by an external one named Outer Loop Link Adaptation
(OLLA).

Basically, the ILLA operates at a fast time scale with the MCS being increased or
decreased based on the SINR to maintain the target BER for the corresponding type of
service. OLLA operates at a slower time scale, being estimated over several transmis-
sions after checking the real error rate via Acknowledge (ACK) and Non-Acknowledge
(NACK) signaling. In practical terms, this process consists of an insertion of a calcu-
lated offset to the threshold in the measured SINR to achieve an average BER fitted to
a defined Quality of Service (QoS).

The present work focuses on determining the best MCS choice to apply in the
transceiver according to the type of service. The delay caused by information inac-
curacy can be mitigated with better processing and inclusion of internal information
from techniques applied in the Physical Layer (PHY) context.

For this purpose, a promising strategy that can leverage better results in the link
adaptation control is the application of Machine Learning (ML) techniques. Differ-
ent mechanisms and topologies can be used in this strategy. It can involve the direct
treatment of an indicator to enhance its precision, or it can be employed directly in the
control system itself.

Another study performed in this work is based on the concept that the internal
processes present in the PHY layer can provide significant data about its condition
and actions. Thus, there is a procedure to provide a method for generating information
related to the decoder’s status. Such monitoring leads to a precise indication of how
close the decoding system is to an error occurrence.

It has to be mentioned that the investigation concerning statistics originated from
inner FEC processing started with a demand exposed by the study of more informative
input data that could be used for different ML topologies. However, this proposition
demonstrated a very relevant strategy for LA control in an independent manner. For
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this reason, as a spin-off, an earlier article was elaborated on, submitted, and published.

Added to this proposal, another improvement is provided using a low-complexity
Neural Network (NN) to format the indicator. This procedure allows signal condition-
ing to avoid dependence on the adopted MCS scheme. The results show that the NN
could also generate a very consistent BER estimator. The main property of this pro-
cessed signal is the fast statistic for prognostic of BER since the number of symbols
needed to achieve the evaluation can be even a thousand times smaller than the normal
statistic processing.

Considering that this work could not execute a complete solution for LA based
on all proposed aspects and knowing that this subject comprises a vast field to be
explored, the extension of research and implementation from this stage is worthwhile.
Some of the methods to improve the accuracy and readiness of indicators are currently
being developed. The next step should focus on the direct utilization of reinforcement
learning algorithms to control the system.
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1.1 Motivation

THE extensively aggregated new services and applications, expected to be present
in future networks, will demand complex control systems. Traditional solutions

using deterministic methods and equations are reaching a breaking point due to an
ever-increasing number of metrics to be considered when making decisions. At the
same time, new techniques using ML and Artificial Inteligence (AI) algorithms have
been researched and applied to solve the most intricate issues in various scenarios. In
all Open Systems Interconnection (OSI) layers or proposed cross-layer structures, this
approach is considered the most promising and probably the unique possible solution
[1] [2].

When the environment for implementing these techniques is the PHY layer, prac-
tical comparisons can proceed to better understand the complexity of ML algorithms
to execute traditional Digital Signal Processing (DSP) tasks, such as adaptive filtering
using Least Mean Squares (LMS) or linear estimators. Depending on the function, a
NN’s complexity, in terms of processing resources, tends to be much higher than some
equivalent deterministic methods [3].

Thus, the emergent problem of using ML in this case relies on the processing capac-
ity of the involved hardware used in transceivers or other connected equipment in the
network. Many complex NNs need a large number of layers and nodes. This condition
gets even more critical when applied to the PHY layer since DSP tasks consume a high
volume of computing resources.

Bearing this aspect in mind, this work intended to create algorithms and ML topolo-
gies that can be processed into actual transceiver hardware. An interesting platform to
implement these Proof of Concept (PoC) subjects is Software-Defined Radio (SDR)
[4] [5] [6]. It offers excellent flexibility, but it also has the capability to carry out
complex SDR tasks and seamlessly integrate ML-based functions [7].

For this reason, the challenge is finding accuracy aggregated to processing effi-
ciency. In such a circumstance, two approaches can be adopted. The first and simplest
one is an effort to employ topologies to achieve low complexity NNs. The second one
is the prepossessing of information before inputting data into the learning operation.
This procedure has shown better results in achieving superior precision and complexity
reduction [8].

Considering these aspects, both arrangements were taken into account to propose
models that can employ ML algorithms on the PHY. The chosen subject is the LA
control system since it is a very important mechanism for attending to requisites of
future mobile network’s new applications.
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1.2 Publications

The first and second papers were produced based on the research related to this
work. The third one is related to the main environment used for proceeding with tests
and the PoC. The fourth is related to the full implementation of the second paper.
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Telecomunicações e Processamento de Sinais (SBrT2022), doi:
doi: 10.14209/sbrt.2022.1570808335.

Ë Roberto Kagami and Luciano Leonel Mendes. ”A Low-Complexity Deep
Neural Network for Signal-to-Interference-Plus-Noise Ratio Estimation”,
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https://doi.org/10.5753/w6g.2021.17227.

Ì W. Dias, A. Ferreira, R. Kagami, J. S. Ferreira, D. Silva, and L. Mendes,
”5G-RANGE: A transceiver for remote areas based on software-defined ra-
dio,” 2020 European Conference on Networks and Communications (Eu-
CNC), 2020, pp. 100-104, doi: 10.1109/EuCNC48522.2020.9200925.

Í João Henrique Silva Delfino, Roberto Michio Marques Kagami, Juliano
Silveira Ferreira e Luciano Leonel Mendes. ”Implementação e análise de
técnica para estimação de SNR baseado em Deep Learning,” Evento: XLI
Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT-
2023), doi: accepted.
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1.3 Document Structure

THE structure of this document is organized as follows: A description of the
employed system design and architecture is given in Chapter 2, including the

architecture, hardware, software, libraries, frameworks, applications, and tools utilized
to implement the algorithms, control systems, quality indicators, machine learning
topologies, simulations and Proof of Concept execution.

Chapter 3 considers the elementary link status indicators and techniques using ML
to improve the accuracy and treatment of the data.

Chapter 4 brings the results of investigative methods to obtain complementary new
indicators.

Chapter 5 will aggregate the previous indicators as part of a Machine Learning
system for Link Adaptation using different types of topology and algorithms.

Chapter 6 presents the conclusion and indicates a track to future works based on the
postulated systems and techniques.

The main Python and implemented machine learning codes are included in the Ap-
pendix section to illustrate in more detail the implementations.



Chapter 2

System Design and Architecture

BY virtue of Digital Signal Processing consolidation and the fast advance of com-
putational capacity, many of the functions required by hardware in telecommu-

nication equipment can be handled using algorithms executed by software. Nowa-
days, even such massive tasks, previously performed by specialized processors, like
application-specific integrated circuits (ASICs), can be executed by General Purpose
Processors (GPP) in the platforms of SDR. This technology provides many advantages.
The strongest point is flexibility, considering the functionality can be reconfigured and
updated through software changes without hardware replacement. Another advantage
is the upgradability since the radio system is more adaptable to changing needs like
additional functions and features.

For the purpose of implementation and PoC, the system of this work employed an
SDR platform mainly based on the transceiver of the 5G-RANGE project [9]. It is
a project supported by the European Research and Innovation funding program. The
National Institute of Telecommunications (INATEL) took part in the Physical Layer
development. The main goal of this project was the introduction of new technologies
to provide coverage for mobile networks in remote areas.

Among these new technologies is the implementation of Generalized Frequency Di-
vision Multiplexing (GFDM) [10]. It is a non-orthogonal multi-carrier scheme based
on a traditional filter bank scheme that provides pulse-shaped subcarriers. GFDM is
a candidate for future wireless communication systems. This technique is important
as long as it generates lower Out-of-Band (OoB) emission than Orthogonal Frequency
Division Multiplexing (OFDM). With this characteristic, better spectral efficiency can
be achieved and, at the same time, less interference is leaked into adjacent channels.
Considering that one of the goals of this project is the secondary occupation of TV
White Space (TVWS), this is a meaningful attribute to avoid interference in the pri-

8
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mary channels.

Another important topic of this project is the implementation of the Polar Code
[11] [12]. It is a linear block error-correcting code with low decoding complexity, high
gain, low latency, and good flexibility. These aspects provide an interesting extension
of possibilities for robustness and data rates.

An overview of the 5G-RANGE project and its results are described in [13]. Some
new elements were included to improve the processing capacity. For the hardware,
a graphic card was added to enable machine learning computing. It also demanded
the creation of an environment for the utilization of ML functions, libraries, and algo-
rithms.

2.1 Top-level Architecture

Figure 2.1 shows the top-level system diagram. From the Internet Protocol (IP)
Network, the data packets are collected and delivered to the Media Access Control
(MAC) layer via software sockets. As this layer is a process running outside the Phys-
ical Layer environment, a Portable Operating System Interface (POSIX) Interprocess
Communication (IPC) is necessary to interface the MAC and PHY layer blocks. The
Radio Frequency (RF) Front-end block comprises all the radio frequency analog cir-
cuits. Programming and data interface between PHY block and RF Front-end board
are performed via a Peripheral Component Interconnect Express (PCIe) bus.

Figure 2.1: Top-level system diagram.

2.1.1 MAC Layer

The Media Access Control layer assembles user data packets for transmission and
disassembles the received packets at the receiving end. As its name suggests, it con-
trols access to the channel (i.e., the medium) in order to avoid collisions between
the users. This procedure is achieved through the mapping of radio resources based
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on resource blocks distributed in time and frequency domains denominated Resource
Blocks (RBs).

The number of necessary RBs per scheduled user portion is calculated accordingly
to the modulation, FEC, and rate-matching parameters. The priority of occupation in
the RB grid is calculated and defined by the QoS of each user. These are the main tasks
to be accomplished by the MAC layer, but other functions can be additionally executed
by this layer, like error control, power management, and security mechanisms.

2.1.2 PHY Layer

The Physical Layer proceeds with the conversion of mapped bits into the RBs to
symbols accordingly to the modulation scheme in the transmission. It executes the in-
verse conversion for the reception. The bits are determined by the coding and decoding
of the FEC block. From the symbols, the transmitted samples are generated after the
waveform module. For the 5G-RANGE project, as previously mentioned, the GFDM
technique is used.

For the reception, the recovery of synchronization, carrier frequency, and phase are
performed. The physical layer also evaluates the channel characteristics, such as atten-
uation and distortion, to calculate an estimate of the channel and equalize the received
signal. Another important assignment of PHY layer is the provision of measures to
indicate the channel link status. That is the main aspect to be focused on in this work.
Thus, a more detailed description of this layer will be presented in the next section.

2.1.3 RF Front-end

The RF front-end circuits can be programmed to modulate or demodulate baseband
signal in order to up or down-convert it to or from the desired band-pass frequency.
Analog filters and parameters for I/Q balance and gain are also provided on this board.
Another interesting aspect of this hardware is the inclusion of an Field-Programmable
Gate Array (FPGA) that can be configured to design custom logic and applications
that require high-speed signal processing or custom DSP algorithms like the Digital
Pre-Distortion (DPD), implemented in this project [14].

2.2 Physical Layer Architecture

As the subject of this work is mainly related to the PHY layer, a more detailed
description will be focused on this context. Figure 2.2 shows a simplified transmission
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diagram. Compared to the complete scheme, the main difference is the utilization
of only one user in a bridge configuration. This strategy enables more simulation
symbols to be used since the data is not distributed to other users. It improves statistical
precision and saves time in processing to collect results. At the same time, the link
environment is analysed by considering a unique scenario. Besides, there is no need
for performing on IPC tasks and more complex MAC functions.

Figure 2.2: Physical Layer transmission diagram.

Considering that the diagram presents the basic data flow, the next task is the pro-
cessing of FEC encoder. The encoder’s configuration depends on the MCS index. The
MCS options were previously determined according to the best distribution of spectral
efficiency. The Quadrature Amplitude Modulation (QAM) mapper establishes the IQ
components of the symbols corresponding to the encoded bits. Finally, these symbols
are transformed into samples in the GFDM waveform block. The samples are properly
synchronized and tagged to be sent to the RF Front-end.

Figure 2.3: Physical Layer reception diagram.

The reception signal flow takes the opposite way. Figure 2.3 shows this path briefly.
Starting with the RF Front-end, the first function block is the GFDM demodulator.
Before all else, it is necessary to find the beginning of the frame. It can be found via
the correlation between the received signal and the known sequence. The Cyclic Prefix
can be used, for instance, because it is formed by the repetition of the last portion of the
frame. However, the 5G-RANGE transceiver implementation inserts a time-domain
preamble at the beginning of the frame. This strategy can provide better efficiency for
detection. A correlation with this sequence generates the indication of a frame start.
The reception detects the preamble and synchronizes the samples to introduce them
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into the GFDM demodulator. The order and the identification of the frame start are
important due to the Fast Fourier Transform (FFT) operations present in this block.

After the demodulator, the symbols are recovered by the channel estimator. This
estimation is calculated based on the pilot sequences. These sequences are composed
of known symbols distributed along the frequency slots and time spacing. According
to this estimation, the data symbols located between the pilot carriers are calculated
using interpolation techniques.

The QAM demapper calculates the Log-Likelihood Ratio (LLR) components for
the required functioning of the polar decoding. It is a soft decision, but this block can
also execute a hard decision. These possibilities will be important to extract informa-
tion on the decoding status that will be better described in Chapter 4.

The polar decoder receives the LLR information and proceeds with computing the
received bits. As the QAM demapper, this block also receives the MCS index con-
figuration from the control channel. With this information, the correct parameters are
applied in the polar decoder processing. The decoded bits are then passed to the MAC
layer that addresses the data to the respective network users.

2.2.1 Hardware Description

The main platform for implementing the transceiver physical layer functions is
based on SDR, using General Purpose Processors. Such an approach allows for high
flexibility, where different radio components can be used by modifying the source
code. This characteristic also provides the opportunity to change radio settings during
communication dynamically. SDR is a very low-cost solution when compared with
dedicated hardware solutions [4]. Moreover, it also provides a fast development time.
Table 2.1 describes the main hardware components used for the transceiver implemen-
tation.

Table 2.1: Transceiver’s hardware characteristics.

Hardware Element Characteristics

CPU
Intel® Xeon® Gold 5220, 3.9GHz
18 Cores/36 Threads, 64 GB of RAM

GPU
Nvidia® Geforce™ RTX 3070
8GB 5888 cuda cores

SDR
National Instruments USRP 2954R
GPS-disciplined oscillator

Vector Extension SIMD AVX-2

The Central Processing Unit (CPU) choice was based on the acquired experience
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with different processor configurations and generations. The Intel Core i9-9900 with
8 cores is at the edge of sufficient performance to accomplish the basic functionalities.
However, a better configuration is needed to provide enough processing capacity when
new features and functions using ML algorithms are added.

Single-Instruction Multiple-Data (SIMD) is a technique used in computer archi-
tectures to perform one operation on multiple portions of data simultaneously using
parallelism. This allows the CPU to process large amounts of data, providing signifi-
cant speed improvements compared to traditional scalar instructions. Intel® processors
have an integrated set of instructions called Advanced Vector Extensions (AVX) [15].
It is a set of mathematical instructions to attend to this parallelism with different data
formats, reducing the need for complex loops and branching structures in the code [16].

For the performance improvement of the ML algorithms, the employment of Graph-
ics Processing Units (GPUs) is the best support in terms of recent platforms for AI
applications. The GPU model used is the Nvidia® Geforce™ RTX 3070 [17]. Even
though the proposed NN algorithms can be executed in the CPU, the readiness of this
solution is interesting to create good and fast PoC implementations. It is also a strong
accelerator for learning processes.

The Universal Software Radio Peripheral (USRP) is a versatile and programmable
hardware platform used as a front-end on many radio communication applications. It
provides a fast prototype and development of custom wireless communication systems.
Its flexibility eliminates the need for multiple specialized hardware-based radios, re-
ducing the cost of equipment and accelerating project implementations. The chosen
model is the USRP 2954R from National Instruments. It fits the needs for the range of
frequency, sample rate, bandwidth, Analog-to-Digital Converter (ADC) and Digital-to-
Analog Converter (DAC) resolution. Besides, two channels are available to implement
Multiple Input Multiple Output (MIMO) technology. Moreover, it has an FPGA Xilinx
Kintex-7 used to implement a DPD scheme. The specifications are described in Table
2.2 for the transmitter and Table 2.3 for the receiver [18].

2.2.2 Software Description

The chosen operating system for implementation in this environment is Linux. The
distribution is based on Debian Ubuntu version 20.04 (Focal Fossa). The minimum
kernel version must be 5.13 for reasons of compatibility required for the Nvidia®
Geforce™ RTX 3070’s graphic card that will be used.
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Table 2.2: SDR USRP 2954 - Transmitter specifications.

Characteristics Value
Number of channels 2

Frequency range 10 MHz to 6 GHz
Frequency step < 1 kHz

Maximum output power 20 dBm
Gain range 0 dB to 31.5 dB
Gain step 0.5 dB

Maximum instantaneous bandwidth 160 MHz
Maximum I/Q sample rate 200 MS/s

DAC resolution 16 bit

Table 2.3: SDR USRP 2954 - Receiver specifications.

Characteristics Value
Number of channels 2

Frequency range 10 MHz to 6 GHz
Frequency step < 1 kHz

Gain range 0 dB to 37.5 dB
Gain step 0.5 dB

Maximum instantaneous bandwidth 160 MHz
Maximum input power -15 dBm

Noise figure 5 dB to 7 dB
Maximum I/Q sample rate 200 MS/s

ADC resolution 14 bit

The primary platform for implementing physical layer functions is based on SDR
using the GNU Radio environment [19]. It is an open-source software development
toolkit that provides several blocks implemented with ready-to-use digital signal pro-
cessing algorithms and other utility communication tools. The blocks are integrated
into a signal flow graph. This is also a practical platform to integrate and connect
proprietary Out-Of-Tree module (OOT) modules.

GNU radio modules are written in both Python and C/C++ languages. The differ-
ences between one language and another are, basically, the complexity of programming
and processing performance. The Python version used is v3.8.10, and the build ver-
sion for C/C++, Gnu Compiler Collection (GCC), is v.9.4.0. As an example, Figure
2.4 illustrates a partial schematic of the transceiver’s transmission.
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Figure 2.4: GNU Radio system diagram of transmission blocks.

The Python language is an option that facilitates programming, but it is also better
suited and handy for integration with GNU Radio. However, it presents some draw-
backs regarding processing power and particular issues like thread prioritization re-
strictions.

Some proprietary blocks were originally written in Python, motivating a necessary
acceleration in real-time operation. Two procedures can be performed for this purpose:
the inclusion of libraries such as Numba [20] or code rewriting into C/C++.

For the C/C++ language, other acceleration libraries must also be employed. Re-
garding CPU usage, the improvement using the parallel processing option is performed
via the SIMD methods. This method relies on executing a single instruction to process
vector operations. For this, two options exist.

The first one is the Volk library [21], which automatically finds the most efficient
way to perform the required operation using parallelism and memory alignment ac-
cording to the processing platform. Initially, a command of this library (volk profile)
must be executed so that the best performance solution found for a particular arithmetic
operation is identified, pointed out, and registered.

The second option is the utilization of these parallelization solutions in a direct
way, proceeding with intrinsic function calls (SIMD intrinsics) explicitly. The syn-
tax of these functions varies accordingly to the employed processor. It also depends
on the type and dimension of the variables used in the mathematical operation. As
the transceiver’s hardware definition establishes the use of an Intel processor, the in-
structions are defined by the specifications in the Intel Advanced Vector Extensions
Intrinsics (AVX) documentation [22].

Some FFT algorithms used in the transceiver’s implementation are based on the
GNU radio block set. Another employed library is FFTW3 [23]. This open-source
software for computing provides good flexibility and adaptation to the hardware for
performance optimization, executing even discrete Fourier transform (DFT) operations
with prime size data, maintaining a good performance.
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The Polar Encoder [24] is implemented using the open-source library AFF3CT [25],
which is also quite flexible. It allows a reduced-complexity version of a Successive
Cancellation Decoding (SCD) decoder, proposed in [26]. This method reduces the
number of mathematical operations when prior knowledge of the frozen bit positions
exists.

The SIMD technique is also used for decoding, with operations that can be done
in parallel, decoding several codewords simultaneously. The library also allows the
use of the unrolled decoders [27] generation technique, which takes advantage of the
architecture of modern processors, making better use of instruction-level parallelism
and pipeline.

Some of the tools and libraries can be compiled directly from source code, allowing
greater control over the software version and environment. For example, table 2.4
provides repositories for some of the leading software used in transceivers.

Table 2.4: Open-source Libraries.

.

Library Version Repository
GNU radio v3.9.2 https://github.com/gnuradio/gnuradio.git
Volk v2.5.0 https://github.com/gnuradio/volk.git
AFF3CT v2.3.5 https://github.com/aff3ct/aff3ct.git
USRP v4.1.0 https://github.com/EttusResearch/uhd.git

For increasing the processing power in AI algorithm implementations, employing
a graphics card, as a General Purpose Graphics Processing Unit (GPGPU), is crucial
for a good performance of the tools applied to ML algorithms, whether for learning or
inference. The primary tool employed for leveraging ML models is TensorFlow [28].
TensorFlow provides high-level Application Programming Interfaces (APIs) that make
it easy for users to define and train ML models. In addition, it has a large community of
developers contributing to the development of libraries and support for the users [29].

Table 2.5: Software installations for GPU usage.

Software Version Repository
Tensorflow v2.7.0 https://www.tensorflow.org/install/source#gpu
Nvidia Driver v510.47 https://www.nvidia.com/Download/driverResults.aspx/186156
CUDA v11.6 https://developer.nvidia.com/cuda-downloads
cuDNN v8.4.0 https://developer.nvidia.com/cudnn

Applications that facilitate their use can be bundled, such as Keras [30]. This frame-
work is built on top of TensorFlow in this implementation. Keras simplifies the process
of setting up and training neural networks, allowing users to easily create complex neu-
ral network architectures with a few lines of code.
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Other tools can also support visualization and acceleration, such as TensorBoard
and the Accelerated Linear Algebra (XLA) compiler [31], which optimizes Tensor-
Flow calculations. This compiler can simplify code by automatically combining oper-
ations, eliminating expendable computations. However, it must be observed that this
tool can face some compatibility issues with the Keras library. For the proper execu-
tion acceleration, the function to be compiled must access only elements that interface
directly with the TensorFlow platform.

The most powerful platforms, systems, hardware, frameworks, and libraries were
presented in this chapter. However, various other software, applications, and tools,
such as data analysis and graphics, were also installed for the transceiver’s best func-
tioning and support.



Chapter 3

Elementary Link Status Indicators

AS the future wireless communications systems spread and provide a wide variety
of applications and use cases, the better achievement of new requirements de-

mands a high accuracy of indicators providing information about the link status. The
most important parameter in Long Term Evolution (LTE) and 5G standards, on this
aspect, is the CQI. Furthermore, when generating this parameter, accurately measur-
ing the Signal-to-Noise Ratio (SNR) is crucial in determining the optimal MCS value.
For this reason, this elementary link status indicator will be analyzed first in a way
that the main issues related to the lack of preciseness can be mitigated. Beyond this, a
proposition of techniques without using high-complexity algorithms is detailed in this
chapter.

The concept of this study considers additional imperfections to be taken into ac-
count, such as interference and even the internal inaccuracies of processing, algo-
rithms, and hardware issues. For this reason, the term SINR will be used to include
and characterize better the impairments to be considered.

In this chapter, some methods to estimate SINR are examined, and, at the same time,
new conceptions and techniques like Machine Learning are implemented to precisely
calculate this measurement.

3.1 Related works

In OFDM systems, most of the methods used to measure the SNR are data-aided
based on known sequences like pilot carriers [32] [33], CP [34] and preambles [35].
This approach is worthwhile, considering that no hard decisions are necessary to es-
tablish the reference of the signal.

On the other hand, some aspects point to drawbacks. One is related to the fact that
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the number of these pre-known sequences in an OFDM frame or subframe is much
lower than the number of payload symbols. The reliability of statistical data increases
when the number of elements used to generate the information is greater. Secondly, if
impairments like fading and impulsive noise hit these sequences in their exact position,
the correct estimation of an entire frame is undermined. On the other hand, if some
imperfection affects only the payload symbols portion, a correct evaluation will not be
achieved. Thus, these propositions do not take into account degradation and imperfec-
tions occurring in the data subcarrier’s location, and that is exactly the point where the
SINR estimation should be performed.

Some researchers have proposed measuring SNR based on preamble transmission
before channel estimation. Boumard’s algorithm [36] uses two identical consecutive
preambles assuming that the channel varies slowly between them in the frequency
and time domains. However, significant changes in the channel lead to errors in the
estimation. This situation can become worse when higher frequencies are used.

Guangliang Ren mitigates this factor in Boumard’s equations by removing the es-
timated noise power from the total received signal power [37] [38]. Milan Zivkovic
proposes a more complex structure of preambles to achieve better results. More sub-
carriers are divided into identical parts in a way they appear periodically between null
subcarriers. After the received signal passes through the FFT process, the noise power
can be easily estimated from these null portions [39].

Non-data-aided SNR estimation has been receiving more attention [40], mainly
with a combination of fast-growing novel ML techniques. Interesting approaches, like
the one presented in Xiaojuan Xie’s work [41], would not be immediately considered
some years ago due to their complexity. In this proposition, the evaluation of noise
is based on constellation image recognition. Offline training is executed using a sig-
nal generated by a known modulator and a known Additive White Gaussian Noise
(AWGN). Options of fading channels, Rician or Rayleigh, are also added. Various
formats of constellation diagrams are exploited. Supervised learning is performed to
recognize the constellation. Three different Convolutional Neural Network (CNN)
are implemented to proceed with feature extraction processing, including AlexNet,
GoogLeNet, and VGG16. These are preeminent CNN for Visual Recognition. All
techniques showed accurate results, no matter what is the constellation diagram. The
computing is executed via a Graphics Processing Unit since it demands a high volume
of processing.

Another ML-based proposition is demonstrated in [42]. It employs a combination
of CNN and Long Short Term Memory (LSTM) layers. The characteristic of LSTM
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layers is their efficiency to make predictions based on historical information. Thus,
more than a precise SNR estimation, this model can also provide information about
channel behavior tendencies.

One simple method to estimate SINR is the Mean Square Error (MSE) based on
hard decisions. However, this calculation introduces non-linearities that result in in-
accurate SINR estimation. The adoption of classical MSE can be a viable solution
if these imprecision issues are considered and compensated. In order to achieve an
acceptable accuracy of the SINR over channel conditions, it is necessary to compen-
sate for the error of the estimator, and the use of Deep Neural Networks (DNNs) is an
interesting strategy [43].

3.2 Mean Square Error for SINR estimation

The data-aided methods, based on the use of pre-known transmitted information
to calculate the SINR, are advantageous because they do not need channel estimation
and hard decision processing. However, only small portions of the frame are taken
into account for this purpose. Statistically, the larger the amount of data used for
estimation, the better the accuracy and predictability of results. The computation of all
sub-carriers provides a superior evaluation of what is occurring in the data region. This
approach can also consider inaccuracies in respect of channel estimation, interpolation,
quantization, and other internal processes that could not be ignored.

On the other hand, the characteristics present in the recent mobile communication
standards can impose some extra difficulties in the utilization of the traditional MSE
method. As robust channel coding schemes are used, such as Polar Code, Turbo Code,
and low density parity check (LDPC), these techniques allow the system to operate
with very low SINR, including negative values in logarithmic scale [44]. Along with
that, the normal operation generates a meaningful number of symbols crossing the grid
limits. Thus, the inaccuracies are much higher when estimation is calculated using
grid-based and hard decisions. Additionally, if a link’s condition worsens quickly,
the current modulation order can lead to very high BER, which also means that the
estimation based on Euclidean distance on the receiver side is even poorer.

3.3 Modified Mean Square Error Function

The first step to mitigate the mean square error calculation’s deficiencies is de-
scribed in this section. A modified MSE function is proposed, where some assumptions
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and adjustments are used to improve the precision of the traditional MSE calculation.
Figure 3.1 shows the instant error vector.

Figure 3.1: Instant error vector.

The Modified Mean Square Error Function will be explained by taking into account
the following equations. By considering the k-th received symbol xk, correspondent
to the transmitted symbol sk, and applying the vector amplitude operator (‖) it can be
stated as

‖ek‖2 =‖xk − sk‖2, (3.1)

where sk is a symbol pertaining to the sample space of a defined constellation. If
the receiver applies a grid-based hard-decision for an M -QAM scheme, where M is
the modulation order, dmin is the minimum distance between adjacent symbols, the
absolute values of coordinates of estimated transmitted symbols ŝk can be determined
using the floor operator (b c)

‖<(ŝk)‖ = dmin

⌊
‖<(xk)‖
dmin

⌋
+ 1, (3.2)

‖=(ŝk)‖ = dmin

⌊
‖=(xk)‖
dmin

⌋
+ 1. (3.3)

Hence, depending on the constellation, the maximum value of a ‖ŝ‖ coordinate is

Smax =
dmin

2
(
√
M − 1). (3.4)

If an absolute value of a received symbol coordinate crosses the most external decision
limit, i.e., Smax + dmin/2, we can assume that the most probable absolute coordinate is
Smax. Furthermore, this occurrence is the key event for the following considerations:

i) If there are no events, then the results of (3.2) or (3.3) do not need correction.

ii) If the value Smax is attributed to the respective coordinate of ‖ŝ‖ when an event
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occurs, the calculated error is closer to the correct value.

iii) On condition that the symbols are equiprobable and equidistant, the frequency
of this detected error is statistically the same as undetected errors for this coordinate
and for each one of the internal symbols (N/2, where N =

√
M ).

By considering a first-level event as the detected component that does not surpass
Smax + dmin and if dmin=2, a similar undetected error δk inserts an underestimation
calculated as

ξk = (1 + δk)− (1− δk) = 2δk. (3.5)

A second level event is a detected component that exceeds Smax + dmin but does not
surpass the next hard decision limit. The undetected inserted error, in this case, is
given by

ξm = (3 + δm)− (1− δm) = 2(1 + δm). (3.6)

As the SINR decreases, higher levels of hard decision limits are overstepped, and
higher values of errors are inserted. Compensation factors could be used to adjust
each level of outdistancing based on its statistical rate and error amplitude. But this
estimation would comprise the computation of a complex arrangement.

Taking into account only the first level event, if an α factor is used to represent the
rate of undetected events and β = 1 + α, the modified function for a k-th received
symbol

‖ek‖2 = ak + bk, (3.7)

where

ak =

(‖<(xk)‖ − ‖<(ŝk)‖)2, if ‖<(xk)‖ ≤ Smax

β(‖<(xk)‖ − Smax)
2, otherwise,

(3.8)

bk =

(‖=(xk)‖ − ‖=(ŝk)‖)2, if ‖=(xk)‖ ≤ Smax

β(‖=(xk)‖ − Smax)
2, otherwise.

(3.9)

Eq. (3.7) can be used to compute the average MSE for the lth user as

ε̄l =

∑
k∈L‖ek‖2

L
, (3.10)

where L is the set of symbols received by user Ul and L is the dimension of L.
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3.4 System Model for Data Analysis

The mobile network system considered in this paper is based on the PHY layer de-
scription provided by 3GPP for the 5G in Release 15 [45]. Using the OFDM technique,
the data RB are transmitted employing M -QAM with M ∈ {4, 16, 64, 256}. The data
symbols are mapped into the OFDM subcarriers, and the inverse Fast Fourier Trans-
form (iFFT) is used to generate the time-domain OFDM block. A CP is inserted to
protect the data from the time-dispersive channels. On the receiver side, the CP is re-
moved after the time-domain synchronization. The FFT is used to obtain the received
symbols in the frequency domain.

Since the estimator only employs the M -QAM symbols to evaluate the MSE, this
estimator can also be employed in Single Carrier (SC) schemes. The setup will con-
sider a system with perfect synchronization, carrier recovery, and equalization in order
to generate data and evaluate the function behavior with pure AWGN. The system
model considered in this paper assumes the M -QAM symbols in the frequency do-
main after the equalization, then the scheme depicted in Figure 3.2 can be properly
used.

Figure 3.2: Data set generation diagram.

The sweep control block selects the gain values of the AWGN source and provides
the specified SINR to the data set block (ηk). A random bits generator provides the
M -QAM block with input data. This block, in turn, produces the symbols to be added
to the noise. Subsequently, the signal is submitted to the function in which output (λk)
is assigned to the data set block. The adjusted range is from -40dB to +40dB with
steps of 0.1 dB. The step time duration depends on the required number of elements
to calculate average values. Figures 3.3, 3.4, 3.5 and 3.6 show the MSE obtained by
applying (3.10) and making L equal to 1000.
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Three scenarios were used to compute the SNR estimation in the MSE function. As
presented, the Modified MSE applies a factor considering non-detected events. This
parameter establishes β = 1 +N/2, where N =

√
M , and the approximation is based

on the first level event. The results for β = 1, where only the saturation condition is
considered is the second option. The results assuming the unconditional grid-based
method for evaluating the MSE are presented as the last scenario. The neural network
proposed next will further estimate the difference caused by the omission of other
levels in the Modified MSE function.
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Figure 3.3: Modified MSE vs. SNR with AWGN channel - QPSK.
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Figure 3.4: Modified MSE vs. SNR with AWGN channel - 16-QAM.
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Figure 3.5: Modified MSE vs. SNR with AWGN channel - 64-QAM.
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Figure 3.6: Modified MSE vs. SNR with AWGN channel - 256-QAM.

Analyzing the results, mainly in the 256-QAM case, it is possible to observe that
the modified mean square error function can provide better proximity to an ideal mea-
surement even with low SNR. Anyway, a nonlinear error component is still present
in this function, because the used approximation does take into account only the first
level of crossing grid events. When the noise is higher enough to generate other levels
of crossing, the error increases. Statistical equations could be employed to provide a
deterministic estimation considering all possible cases. It also depends on the modu-
lation option, then these are very complex equations to be determined. Therefore, the
next sections will consider options to execute this calculation.
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3.5 Nonlinear regression function

The samples provided by (3.10) are compared to the target (ηk) in order to produce
data for the regression function. From the difference vector (λk − ηk), a function can
be created via curve fitting techniques [46]. Traditional polynomial regression is an
option.

Figure 3.7: Polynomial nonlinear regression.

However, in this case, the result is not satisfactory. A high-order polynomial is
necessary to fit the curve, as seen in Figure 3.7. Moreover, the curve fitting diverges
from the observed data samples for values at the edge and outside of the range.

Neural networks are excellent at finding complex nonlinear relationships between
input and output variables. They can model highly intricate nonlinear patterns in the
data, making them also particularly suitable for regression issues. A Deep Neural Net-
work with few elements can provide a precise, low complexity, and very satisfactory
function. The description of the used DNN is performed in the next section.

As the DNN can precisely fulfil the nonlinear regression, it can be used for the
inference of imprecision given by the modified MSE function, as shown in Figure 3.8.

Figure 3.8: Modified MSE plus DNN scheme.
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3.6 Deep learning network description

Deep Neural Networks are the core of many Machine Learning topologies. It is
fundamental for ML, achieving excellent results across different applications. One
of its properties is good performance in handling nonlinear regression functions. This
characteristic was the trigger to utilize the approaches in the proposed implementations
of this research.

The basic element of a Deep Neural Network is perceptron. It is composed of an
input, a weighted sum, a bias, and an activation function. Figure 3.9 shows the diagram
and equation to produce an output.

Figure 3.9: Perceptron architecture.

In order to create a DNN model multiple layers of neurons are arranged in a way
one neuron of a layer combines with all other neurons in the subsequent layer. The
concept of a low-complexity DNN is necessary to avoid a processing overload since
it will be inserted in a massive computing environment. After some tests, a minimal
structure was defined to achieve a satisfactory outcome. The configured DNN topology
is shown in Figure 3.10.

It has two hidden layers with four neurons per layer and a singular input. All layers
use linear activation functions, except the hidden layer 2, which applies a sigmoid
activation function. The bias b1 and b2 are vectors containing 4 elements.



Chapter 3 3.6. Deep learning network description 28

Figure 3.10: Implemented Deep Learning Neural Network topology.

In the execution of the learning process, some different methods can be used to
adjust the parameters. All algorithms try to minimize the error or loss function. An
optimizer’s goal is to find the best set of weights and biases to approximate the pre-
dicted output and the actual target values. The employed optimizer for this DNN is
Adam. It is frequently used due to its fast convergence.

One of the best platforms for Machine Learning is Tensorflow. At the same time,
it can run on various hardware, including CPUs and GPUs. It also has a large user
community. For these reasons, it was chosen as the framework to create the presented
DNN.

All descriptions for options for this topology, according to the modulations, are
presented in the Appendix section. The learning process considered an SINR = -10dB
as the worst scenario. After this value, the reception process starts to fail in the carrier
frequency and timing recovery.

Figure 3.11 shows the biases and weights for 256-QAM model just for exemplifi-
cation.
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Figure 3.11: Biases and weights for for the 256-QAM model.

Adopting these parameters, the learning process was successfully accomplished, as
can be visualized in Figure 3.12 provided by the TensorBoard utility tool. Even in
the worst case, which is the 256-QAM option, the error loss ( < 5e−4) is sufficient to
provide a very precise result.

Figure 3.12: DNN training (TensorBoard).

3.7 Results

Figures 3.13,3.14, 3.15, 3.16 show the achievement of a trained neural network. As
can be seen, the values of predictions close to the edge are also consistent.
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Figure 3.13: QPSK - DNN output.
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Figure 3.14: 16QAM - DNN output.
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Figure 3.15: 64QAM - DNN output.
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Figure 3.16: 256QAM - DNN output.

Figure 3.17 shows the achieved results for the proposed scheme. The chosen mod-
ulation is 256-QAM since it is the most complex case. As can be seen, the estimated
SINR values are very close to the ideal ones.
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Figure 3.17: Proposed function response.

The mean squared error of 400 measurements was calculated by the proposed func-
tion. By considering ρk as the k-th measure of this vector and ηk as the respective ideal
target, the value is given by

M =
1

400

400∑
k=1

(ρk − ηk)2 = 0.00608495. (3.11)

Predictive strategies are interesting when the link condition indicates a fast-changing
situation. Then, this DNN can also be connected to other neural network topologies,
like Long Short Term Memory (LSTM), for prediction purposes. This combination,
for instance, is proposed in [42].

The Proof of Concept implementation of the proposed SINR estimation method,
presented in this chapter, took perfect conditions under consideration. However, real
operational conditions can lead the SINR estimation to different results.

The optimal solution also depends on the effects of channel estimation and interpo-
lation techniques, synchronism algorithms, and carrier recovery mechanisms. These
factors can generate noise propagation, then a DNN retraining within the real envi-
ronment is an important strategy to achieve better accuracy. Figure 3.18 shows the
diagram with the DNN block integrated into the GNU Radio system.
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Figure 3.18: GNU Radio system diagram of reception including DNN block.

As can be seen in Figure 3.19, the behaviour of the Modified MSE implemented in
real-time is slightly different from the simulation considering a perfect functioning of
channel estimation and reception parameters, mainly with very low SNR values.

Figure 3.19: Proposed model response for 256-QAM with real-time implementation and DNN
retraining.
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When the channel estimator block generates the symbols, the involved calculation,
based on the zero-forcing technique, can increase the added noise effect. This is one of
the reasons the estimation tends to present more inaccuracies. However, this difference
can be successfully corrected after the DNN’s retraining. This procedure was executed
by current Inatel’s staff at the Radiocommunications Reference Center (RRC).

After the proper implementation of this retrained DNN in the 5G-RANGE transceiver,
as shown in Figure 3.18, the LA control was set to non-automatic configuration. The
MCS was fixed in the 256-QAM constellation to verify the accuracy of SINR esti-
mation using DNN. Figure 3.20 demonstrates an interesting picture when an SINR of
10dB is applied. At this point, it is no more possible to identify the constellation shape.
However, even in this situation, precise estimation is provided.

Figure 3.20: Real-time SINR estimation of a 256-QAM constellation.
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3.8 Conclusions

A precise estimation of Signal-to-Interference-plus-Noise Ratio was efficiently ex-
ecuted by adopting the proposed modified Mean Square Error function plus a low-
complexity Deep Learning Neural Network to avoid the intricacy of statistical com-
putation. From this point on, different strategies can be performed to achieve better
accuracy, performance, and prediction.

As demonstrated, this method also provides adaptability to different hardware, sys-
tems, and architectures by executing proper learning of the DNN. Thus, the designed
solution accomplished the intended purpose. The same neural network topology can
be easily applied to different modulation options using predefined bias and weights.

The low complexity of DNNs can enable a suitable solution in real-time platforms
like Software-Defined Radio. The inference processing is not costly and the imple-
mentation was successfully executed jointly with all DSP algorithms.

In spite of the achieved precision in the SINR estimation, more information must
be provided to the system to fulfil all the demanded requirements in future mobile
network systems. Moreover, such strategies must consider the concerns about real-time
processing. Pondering these aspects, the next chapter will introduce some proposals in
terms of complementary indicators.
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Complementary Link Status
Indicators

FOR the next generations of mobile networks, a large number of parameters are
foreseen to manage the diverse new use cases. In this scenario, more complete

and accurate information must be generated to provide consistency when defining these
parameters. Depending on the required QoS, and a better detailing of the link condi-
tions, the decision-making for each application will be appropriately oriented.

As seen previously, the main parameter to be determined in a Link Adaptation is
the MCS index. Then, establishing the currently adopted indicators relies primarily
on detecting bit errors. Many link adaptation control methods make use of error oc-
currences or ACK/NACK statistics to estimate error rate limits [47]. However, this
procedure is contradictory when one of the quality requirements is to achieve high
levels of reliability.

The primary indicator, also spotted in the previous chapter, is the SINR. It could be
evaluated that some estimations generally depend on the assumption that the processes
are nearly ideal. It was also evinced that data-aided algorithms do not take into account
channel estimation and other reception imperfections affecting the subcarriers with the
data. However, these imperfections can be quite significant depending on the channel
type and the pilot channel spacing [48].

In practical terms, the limits for Link Adaptation tend to be based on tables with
fixed safety margins and hysteresis [49]. Even so, these margins are not precise. Mech-
anisms to compensate for this error and lack of accuracy are executed by an exter-
nal control and supervision known as Outer Loop Link Adaptation. This procedure
works relatively well, but it can insert a significant delay until complete convergence
is achieved. Along with it, slow action triggering is not recommended in control sys-

36
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tems [50] [51].

Based on all these reasons, it is clear that complementary indicators can help con-
siderably in these subjects. An interesting indicator would be the capacity to report a
probability of error instead of its occurrence. Therefore, in this chapter and the next
one, some propositions and methods will be presented to improve ILLA control actions
in such a way that Link Adaptation can be performed without the OLLA control.

4.1 Related works

Since the advent of 5G networks, with the introduction of network slicing and mul-
tiple scenarios, researchers are contributing with new methods to improve the CQI
estimation. Apart from the SINR evaluation and CQI definition, which take part in the
called ILLA, the link adaptation control can consider an OLLA mechanism to compen-
sate measurements and processing inaccuracies [52] [53]. A final definition criterion
depends on the Bit Error Rate or Block Error Rate target and throughput maximization.

The conventional OLLA evaluation establishes margins that are conditioned by
statistics. If the discrepancy between the estimation and the target is high, the pro-
cess corrects the difference, but it may present a slow convergence. It can also face
an even worse scenario depending on the channel variability [54]. Some notable op-
erational results confirm the aspects addressed here. The offset margins introduced by
OLLA to compensate ILLA inaccuracies can establish considerable variations (from
10% to 30%) [55].

Other algorithms available in the literature can achieve better performance by using
the statistics of the received data. One example is the algorithm based on Bayesian
learning proposed in [56]. However, in this case, the simulated target BER values
(0.1 to 0.3) are far from what could be considered a high-reliability service category.
The OLLA convergence speed can also be accelerated by adjusting the initial offset
parameter, as described in [57]. This approach indicates how important is a precise
and successful initial CQI estimation in the ILLA.

Proposed methods applying ML have emerged to improve link adaptation effi-
ciency, achieving successful results [58]. In [59], the Multi-Armed Bandit (MAB)
algorithm and the reinforcement learning (RL) techniques are applied. Many other
machine learning procedures are used to optimize the OLLA convergence and perfor-
mance [60] [61] [62].
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4.2 Error Correction Amplitude Indicator

The typical Inner Loop Link Adaptation feedback is based on a lookup table where
an SINR measure determines a CQI index. Empirically, the breaking point SINR for
each MCS index can be found by varying the SINR while computing the average bit or
block error rate, as can be seen in Figure 4.1. When the SINR approaches its breaking
point, the error probability increases, indicating a decrement in the QoS.

After mapping all possible options, safety margins and hysteresis can be applied
according to the degree of reliability, required data rate, and QoS factors that supervise
the current service. As can be seen, the lack of information about what is happening
immediately before the occurrence of errors creates a blind region to estimate the error
probability and the reliability degree.

Figure 4.1: Breaking point estimation based only in the SINR.

In this chapter, we propose using a complementary indicator, which is based on
statistical information available on the receiver side, to establish a better mapping of
the link status as depicted in Figure 4.2.

In the bit detection processing, the involved operations carried out by the PHY
decoder are capable of generating information about corrected errors. When a FEC
scheme indicates the number of bits successfully corrected, this data is directly pro-
vided. Some Reed-Solomon encoding implementations, for instance, can generate this
information directly.

Otherwise, in schemes like LDPC and Polar Code, data preprocessing is necessary
to calculate this value. In these cases, considering hard decoding as a detection pro-
cessing without correction algorithms, a signal can be created comparing this detection
with the complete algorithm detection to estimate a reliability level.

According to this approach, an indicator named Error Correction Amplitude (ECA)
is introduced. As a definition, it can be stated as:
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Figure 4.2: Breaking point estimation based on the inner receiver statistics.

ECA is the intervention degree applied by the decoding system compared to the
detection without correction algorithms or probabilistic analysis techniques.

In practical terms, this indicator can be used to measure the proximity that the
decoding system is from an error occurrence or from an expected error rate value.

4.3 System Model for Data Analysis

Actually, polar encoding is used in 5G channel control messages. However, it is
a promising technique to be employed in data channels for future mobile networks.
Hence, a model to generate the ECA index is proposed based on the Polar Code tech-
nique using the block diagram shown in Figure 4.3.

Figure 4.3: Block diagram for generating the ECA index.
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After the channel estimation and the equalization process, the demapper retrieves
the data for the LLR evaluation, which will be used by the Polar decoder to recover the
transmitted bit-stream. In parallel, the hard decoder provides non-corrected data. It is a
simple task, demanding very low processing resources. Lookup tables can be used, for
instance. The ECA processing block compares the sequences obtained in each chain
and evaluates the Hadamard distance between them. The measure, in this case, is a
particular case of the Hamming distance since it is simply the sum of all different bits
between two codewords.

The Polar Coding systems were implemented using the AFF3CT library [63]. It is
open-source software coded in C++, licensed by Massachusetts Institute of Technology
(MIT), which supports a wide variety of FEC algorithms. Four modulation orders,
varying from Quadrature Phase-Shift Keying (QPSK) up to 256-QAM, are combined
with 9 different code rates to generate 22 MCSs values. This distribution scheme was
elaborated only for validation and proof of concept purposes. Table 4.1 presents all
MCSs values considered in this study.

Table 4.1: MCS definition and breaking point SINR, assuming a codeword length of N = 2048
bits.

MCS Modulation K Spectral Efficiency SINR (10−6)

1 QPSK 1024 1.0000000 3.8 dB
2 QPSK 1192 1.1640625 4.6 dB
3 QPSK 1368 1.3359375 5.5 dB
4 QPSK 1536 1.5000000 6.2 dB
5 QPSK 1704 1.6640625 7.3 dB
6 QPSK 1792 1.7500000 7.8 dB
7 16-QAM 1024 2.0000000 10.3 dB
8 16-QAM 1192 2.3281250 11.3 dB
9 16-QAM 1368 2.6718750 12.2 dB

10 16-QAM 1536 3.0000000 13.2 dB
11 16-QAM 1704 3.3281250 14.3 dB
12 16-QAM 1792 3.5000000 14.9 dB
13 64-QAM 1280 3,7500000 16.1 dB
14 64-QAM 1368 4,0078125 16.8 dB
15 64-QAM 1480 4.3359375 17.9 dB
16 64-QAM 1600 4.6875000 18.9 dB
17 64-QAM 1704 4.9921875 19.7 dB
18 64-QAM 1792 5.2500000 20.4 dB
19 256-QAM 1368 5.3437500 24.4 dB
20 256-QAM 1536 6.0000000 25.3 dB
21 256-QAM 1704 6.6562500 26.4 dB
22 256-QAM 1792 7.0000000 27.1 dB
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As in the PoC of the previous chapter, a transceiver was implemented using the
same platform to evaluate the performance of the proposed indicator under real oper-
ating conditions. Figure 4.4 depicts the block diagram of the test setup.

Figure 4.4: Data collection diagram.

For each fixed MCS index, the SINR control block automatically sets the AWGN
power level by sweeping the α parameter and sending the real SINR value to the data
acquisition block. The reception block processes the ECA and the average BER, de-
livering the results synchronously to the data acquisition block. The reception block
also configures its current MCS index via the control channel, and the payload data is
used to calculate the BER statistics. This collected data is shown in Figure 4.5.

Figure 4.5: ECA vs. SINR.
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The ECA calculation is executed for each frame and can be determined using (4.1).

δ =

m∑
i=1

|yi − gi|

Λ
, (4.1)

where gi is the i-th bit produced by the hard decoding, yi is the i-th bit produced by the
soft decoding and m is the number of payload bits in the frame. The Λ parameter is
the maximum number of hard bit errors allowed in the frame to achieve the soft BER
target. This parameter is obtained by applying a fixed SINR (column 5 of Table 4.1) for
each MCS index. Considering the lower spectral efficiency, ≈ 109 bits were computed
to establish a reasonable average value of Λ. This procedure links the ECA index to
a target BER of 10−6. Thus, the Λ value is ≈ 106 in this situation. Lower target BER
could be used, but it would spend longer-lasting simulations.

In order to evaluate the performance of the proposed SINR approach, errors were
artificially introduced in the SINR measurements. The simulations do not include
other impairments. To provide a controlled environment, only white Gaussian noise is
added. Two types of distortions were inserted.

When SINR estimation is obtained using pilots, preambles, or cyclic prefixes, e.g.,
the imprecision of channel estimation and interpolation processes are not taken into
account. In this case, the overestimated SINR option simulates a situation where its
value, measured by the reception block, is 0.5 dB more optimistic than the real one
provided by the control block.

The nonlinear distortion comes from the calculation using the average ratio of the
symbol power to the error power, where the received error magnitude is the Euclidean
distance between the received data symbols and the decided symbols (hard decision
based on the constellation grid). Using (4.2), the SINR value of a kth received symbol
is based on the squared error, given by [64]:

‖ek‖2 = ak + bk, (4.2)

where

ak =

(|<(xk)| − |<(x̂k)|)2, if|<(xk)| ≤ dmax

(|<(xk)| − dmax)
2, otherwise,

(4.3)

bk =

(|=(xk)| − |=(x̂k)|)2, if |=(xk)| ≤ dmax

(|=(xk)| − dmax)
2, otherwise,

(4.4)

with xk is the kth received symbol, x̂k is the closest symbol in the M -QAM constella-
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tion, and dmax is the maximum absolute value of the current constellation coordinate.

The average SINR per frame is defined as

γdB = 10 log

( n∑
k=1

‖ek‖2

n

)
, (4.5)

where n is the number of received symbols in the frame.

When a received symbol crosses the constellation grid, an incorrect error value is
generated. Figure 4.6 shows the difference between the real SINR, provided by the
control block, and the measured SINR with imperfections, provided by the reception
block.
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Figure 4.6: Measured SINR with imperfections.

For comparison purposes, three different modes were implemented to control the
link adaptation process. The system diagram is shown in Figure 4.7. To evaluate
only the results provided by the ILLA, there is no OLLA scheme. A plain operation
is adopted, where the MCS index can remain unchanged, or it can be increased or
decreased by one unit. To reduce the control complexity, high mobility characteristics
were not considered. The decision is processed at the end of each frame.
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Figure 4.7: System diagram.

To proceed with the link adaptation control, the estimated MCS index is sent via
the loopback path to the transmission block. The MCS index configuration is syn-
chronously applied during one entire frame length.

The direct control mode chooses the MCS index based on the breaking point SINR
according to the lookup table (column 5 in Table 4.1). The hysteresis control mode also
employs the same lookup table. However, an offset (+1dB) is added to the breaking
point SINR to establish a fall-forward action threshold. An offset (+0.5dB) is also
added to the breaking point SINR to establish a fallback action threshold. It creates a
safety margin and lower variance.

The ECA control mode defines an immediate fallback action if its value is greater
than 1.0. The fall forward action, on the other hand, depends on the lookup table based
on data shown in Figure 4.5. The ECA value is estimated by addressing this lookup
table with the current MCS index increased by one unit. The fall forward is executed
whenever this estimated ECA value is smaller than 1.0.

4.4 Results

The SINR control block automatically provides the α and real SINR values, as can
be seen in Figure 4.7. The setup range is from 4.2 dB to 27.5 dB with steps of 0.1
dB. A payload data comprises 21670 symbols per frame. The number of elements
used to establish average values is 600 frames per SINR step. The achievement index
is the average ratio of successful target achievement occurrence (BER < 10−6) to the
total events. One evaluation is executed per SINR step. As the channel is AWGN,
parameters like the number of pilots, CP, and subcarrier frequency spacing do not
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affect the results.

Figure 4.8 shows the results for the three control modes using SINR values with
overestimation. Figure 4.9 exhibits the obtained results for the three modes using
SINR values based on the grid-based decision method, which generates a nonlinear
response. From the simulations in these two scenarios, the total transmitted bits for
each type of MCS index control were computed, as well as the BER and respective
target achievement index. The tables 4.2 and 4.3 present these results.

Table 4.2: Transmitted bits with overestimated SINR.

Mode Transmitted bits (Mb) Achievement %

Direct 11.134 0.43

ECA 10.918 99.57

Hysteresis 10.372 100.00

Table 4.3: Transmitted bits with nonlinear measured SINR.

Mode Transmitted bits (Mb) Achievement %

Direct 10.982 30.34

ECA 10.826 95.30

Hysteresis 10.172 100.00

As can be seen in Figures 4.8 and 4.9, most of the time, the direct control mode
exceeds the target limit. Collecting the number of transmitted bits, for the case of SINR
measurement with overestimation error, the ECA control mode provided a 5.26% gain
compared to the hysteresis control mode.

Figure 4.8: BER using the overestimated SINR (0.5 dB).
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Figure 4.9: BER using SINR with a nonlinear response.

Similarly, when a nonlinear error is applied, a 6.43% gain is verified. The direct and
hysteresis control mode could be tuned to equalize the gains. However, this procedure
would only fit these particular situations. Using the ECA, the target is automatically
achieved for different scenarios, different MCS indexes and different receiver imple-
mentations.

As can be seen in Figure 4.6, the estimation error is significant in regions after
fallback limits. A fast-changing link condition and delayed fallbacks can establish
even greater gains. Examining the data close to the BER target limit, it is displayed
that the number of hard-bit errors is hundreds of times greater than the number of
soft-bit errors. As a result, this attribute provides faster statistics about low error rates.

4.5 Conclusion

The simulations demonstrate that the MCS control using the Error Correction Am-
plitude indicator for the link adaptation improves the throughput by keeping the de-
manded reliability strictly. The proposed indicator is consistent with the expected at-
tributes. It estimates the actual error tendency and indicates a faster and more precise
sample of low error rates. It can infer error probability before the occurrence, extract-
ing BER statistics with low processing and without payload consumption.

Chapters 3 and 4 proposed different strategies for precision improvements and for
providing complementary information. Anyway, Link Adaptation will require more
control mechanisms to take into account the PHY provided information, mainly con-
sidering the entire system status. The next chapter brings out decision-making issues
and propositions keeping in mind a more systemic point of view.



Chapter 5

Link Adaptation Control Using
Machine Learning

THE employment of effective indicators is an essential groundwork for Link Adap-
tation process. For this reason, the subjects of the previous chapters were mainly

based on the improvement of the elementary one (non-data-aided SINR estimation)
and the proposition of a complementary link status indicator (Error Correction Ampli-
tude).

Many techniques have been proposed to perform Link Adaptation control. Among
these propositions, there are several using Machine Learning algorithms. As could
be seen in Chapter 3, this technology can also help with accuracy issues. However,
the decision-making also needs more information about the demanded constraints and
Quality of Service requirements.

This chapter proposes some architectures for the use of LA control systems em-
ploying ML techniques. The first focuses on ECA as a sufficient standalone element.
The second is the simplest type of control based on the reinforcement learning tech-
nique. This is a basis for other topology propositions that are presented as schemes for
research and Proof of Concept in future works for LA control using Machine Learning.

5.1 Related works

Many alternatives have been employed to enhance the efficiency of Link Adapta-
tion. In a straightforward manner, this improvement resides basically on a solution
providing the higher possible data rate accordingly to a required error rate limit or a
reliability level. In the context of system control and probability theory, the principle
of maximizing results from a set of actions is known as Multi-Armed Bandit (MAB)
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problem [65], which is also the perspective of RL techniques. In [66], the criterion
of MAB is employed to mitigate the problems of slow convergence and sub-optimal
throughput present in the Outer Loop Link Adaptation. In this scheme, the bandit
arms, or action options, are responsible for mapping a context vector that comprises
the observed link state to the success probability associated with each available MCS.
An Artificial Neural Network (ANN) is modeled to predict the transmission success
probability.

The MAB is inherently performed by reinforcement learning techniques, like in
[67]. This proposal is based on error clustering, which refers to the event where con-
secutive transmission errors tend to occur in groups due to the presence of bursty
noise or fading. Named Reinforcement Learning Link Adaptation (RLLA) in [62],
this proposal uses RL with the Thompson Sampling technique. This is a well-known
algorithm used in the field of sequential decision-making. It is applied to solve the
explore-exploit trade-off problem, where the decision-maker balances between gath-
ering more information (exploration) and exploiting the currently best-known option
(exploitation). This is executed by incorporating uncertainty through Bayesian in-
ference, where exploration actions have uncertain reward distribution, and exploiting
actions use the knowledge of rewards gained in the previous rounds.

Bayesian inference is a good strategy to combine preexisting knowledge and up-
date beliefs with new evidence, quantifying uncertainty [68]. In this specific case,
it models the ACK probability associated with each candidate MCS value. This on-
line learning method is also used in [56], receiving the denomination BayesLA. Both
propositions are similar and achieved better results compared to traditional OLLA al-
gorithms. However, in BayesLA, a Rayleigh fading wireless channel is included in the
simulations.

One of the most applied and straightforward techniques of reinforcement learning
is Q-Learning, introduced by Watkins in [69]. It is based on an environment with
discrete states mapped in a matrix. This is basically a table containing the rewards
collected when an action produces a state transition. The algorithm’s objective is to
learn the optimal action-value function to estimate the expected cumulative reward.
One drawback of this technique is the discretizing of states. If the granularity is high,
meaning a low-dimensional environment (i.e., a few states), the quantization is better,
and the technique converges fast. However, a high-dimensional environment generates
a long-lasting time of convergence in the learning process.

In Deep Q-Learning (DQL), the state table can be replaced by a Deep Neural Net-
work [70]. This way, in high-dimensional environments, the learning convergence time
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is shorter, and there are no discrete levels for the states [71]. This method is explored
in [72], and it is denominated as Deep Reinforcement Learning for Link Adaptation
(DRLLA). Three different types of channels were used to evaluate this proposition:
AWGN, Raileigh, and pre-recorded real-world channels [73].

The related works in this chapter and in the previous ones highlight the importance
of accurate link adaptation in mobile networks to achieve higher throughput and reli-
ability. Machine Learning algorithms with incorporated state-of-the-art indicators are
promising tools for optimizing link adaptation in future wireless networks.

5.2 Link Adaptation Control Topologies

The control architecture for LA can employ the primary and the complementary in-
dicators as they were previously defined in this dissertation. However, distinct topolo-
gies can be used to provide actions or statuses as output. The first case will be referred
to as Direct Decision since the information to be sent to the Base Station via Channel
Quality Indicator is the MCS index itself.

The second case is referred to as an Indirect Decision topology since the ML output
can contain statuses or probability information. In this proposed scheme, this data
is sent to the BS, where the system can better decide the actions based on the QoS
contract specification [74]. Figure 5.1 shows an overall perspective diagram, including
some of the introduced elements. An implemented topology can utilize any of these
components.

Figure 5.1: Link adaptation control overall perspective.

In the Direct Decision topology, the actions that must be informed by the ML for
the LA control are the remaining at the current MCS index or an indication of change.
This adjustment can be a positive (fall forward) or negative (fall back) jump. It can also
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inform a unitary or a multiple-step. In the implemented PoCs, the process increments
or decrements the MCS index at each frame.

Depending on the ML algorithm, the output can indicate an immediate jump to the
value that best satisfies the required conditions. From this context, some approaches
can be initially indicated:

• Direct Decision with Standalone ECA;

• Direct Decision with Q-Learning;

• Indirect Decision with achievement probability output.

The Direct Decision items and related implementations will be considered in this
chapter. The Indirect Decision proposition is intended to be evaluated in future works.
Thus, it will be better explained in the final chapter.

5.3 Direct Decision with Standalone ECA

The Error Correction Amplitude concept constitutes the basis of this proposal,
where the system goal is to determine the limits of reliability with the best precision for
the achievement of QoS. As could be seen, if the SINR estimation is not based on the
model presented in Chapter 3, the correlation between the SINR measurement and the
error rate is not straightforward and linear since it presents unidentified inaccuracies.
More than that, it can be based on data-aided estimations. In this case, as previously
mentioned, the estimation results do not take processing imperfections into account in
the payload portion of an OFDM frame.

In consequence, the application of the ECA indicator provides more precise infor-
mation about the real state of the link regardless of all these factors. Figure 5.2 is a
diagram representation of a topology using only the ECA.

Figure 5.2: Link Adaptation Control scheme based on standalone ECA.
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The ECA normalization process was implemented using a Deep Neural Network,
and this process will be described later on in this section. Some initial considerations
must be taken into account with respect to ECA and BER. As expected, the correlation
between ECA and hard BER (error occurrence with the hard decision) is always linear
and direct. It can be seen in Figure 5.3.

Figure 5.3: ECA vs. hard BER.

However, some differences can be found in the correlation between the ECA index
and the soft BER (error occurrence with the soft decision) accordingly to the MCS
index. This variation can be originated by characteristics such as the constellation
shape, code rate, and FEC efficiency. It can be seen in Figure 5.4.
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Figure 5.4: Measured ECA vs. soft BER.

To normalize the curves of the ECA versus the BER, a low-complexity Neural Net-
work can also be implemented. For this proposition, a similar Deep Neural Network
topology used in Chapter 3 was trained. The difference is the addition of an input.
Figure 5.5 shows the model where x1 is the non-normalized ECA and x2 is the current
MCS.

Figure 5.5: Neural Network topology for ECA normalization.

The result was successfully achieved. Some ECA values were used as references
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and indicated a very balanced output for soft BER estimation, as can be seen in Figure
5.6.
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Figure 5.6: Normalized Error Correction Amplitude output accordingly to MCS index.

Employing the normalized and calibrated ECA, a simple control scheme can be
implemented based on the BER target for the QoS value established by the system.

Furthermore, the ECA vs. soft BER curve differences will depend on the type
of techniques and algorithms used by the different implementations of transceivers.
The application of the adaptive and learning characteristics of ML algorithms is quite
advantageous for the determination of the intended results.

5.4 Direct Decision with Q-Learning

In this model, shown in Figure 5.7, the reinforcement learning block’s output indi-
cates the immediate action to be taken, that is, the MCS index to be used.

Figure 5.7: Direct decision with Q-learning diagram.
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Among the most successful algorithms for decision-making based on reinforcement
learning is the Q-Learning scheme [75]. It is a method based on creating a flowchart of
actions based on rewards, which are determined according to the relevance of choices
necessary to reach a final state that satisfies certain requirements. In this way, a map-
ping of actions is processed according to each state through an array of values (Q-
values). This method is interesting because it is a low-complexity system.

The principle of obtaining a convergent result is based on Bellmann’s Equation [76].
In conformation with the reinforcement learning approach, the statement indicates that
a long-term reward of a current action is the combination of a reward from the current
action and the expected reward from future actions. Thus, a fitted equation to compute
the Q value, considering actions and states, can be written as

Q(st+1, at+1) = Q(st, at) + α[Rt+1 + λQ(st+1, a)−Q(st, at)], (5.1)

where α is the learning rate, λ is the discount rate, Rt+1 is the reward that depends on
the transitioning from the time t to t+1.

States: For the execution of the algorithm using this method, the current MCS index,
the value of SINR, and the value of ECA were used as input parameters.

Actions: The actions to be performed are arranged in a vector with 3 commands:
”stay”, ”up”, and ”down”, indicating respectively that the system has to stay in the
current MCS index, it must change to one index higher (fall forward), or it must change
to one index lower (fall back), indicating the best-suited index of MCS according to
the current condition.

To achieve better convergence, debouncing is included since the system delay can
insert some instability. The confirmation of a state, or the current MCS index decision,
is executed after consecutive iterations. The number of iterations was specified as
20 during the training process and as 2 in the inference execution. Other values can
be used without compromising the functioning, but empirical tests pointed to a good
convergence utilizing this strategy.

The inclusion of SINR was necessary due to the characteristics of the performance
curves when using constellations 2N with N assuming the values 2, 4, 6, and 8. These
are configurations found in standards such as LTE and 5G. However, the exclusion
of odd values of N generates performance gaps between the considered modulation
schemes.

When polar codes are configured to fill these gaps, the resulting spectral efficiency
using consecutive MCS index with different modulations does not present a linear
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response. One reason probably resides in soft decision issues since the quantizing is as
better as higher is the constellation order. In future works, modulation schemes using
N with odd values or even multidimensional constellations could be used to establish
a better distribution of spectral efficiency into these gaps.

The number of MCS is 22, while the number of SINR positions is 280, considering
the range from 0 to 28 dB with steps of 0.1 dB. The maximum value used for the index
of ECA is 5.0, where the unit value corresponds to a target rate of BER equal to 10−6.

Figure 5.8: Reward vector: MCS 21 from 20dB to 28 dB.

The reward vector, partially shown in Figure 5.8, considers the spectral efficiency,
which increases with the MCS index. Regarding the SINR, there is a gradual decrease
in negative rewards until zero values are reached in the region that will be controlled
by the ECA indicator.

The target of BER = 10−6 was taken as an example in this implementation, that
is when the value of ECA = 1.0. Finally, the state with a peak reward value is fixed
exactly at this point, aiming to create an array of Q-values that generates an inference
of actions in order to converge to this state.

For the simulation and execution of the Q-Learning algorithm, the Python language
was used. The maximum value of ECA was set to 5.0, and the curve of MCSs decided
by the algorithm, shown in Figure 5.9. The actions were obtained with the target value
of ECA = 1.0, and it shows that the values obtained are adjusted with the target rate of
BER = 10−6.

The results demonstrate a consistent convergence of the Q-values. One drawback of
this implementation is the quantized values of ECA and SINR. This aspect is intrinsic
to the Q-Learning method. If more levels of states are aggregated, the lasting time to a
fitted learning process can be very high.
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Figure 5.9: Q-Learning algorithm response & ECA vs. SINR

The best approach to optimize the LA control starting from this technique is the
Deep Q-Learning [77]. In this case, the table of states and rewards is replaced by a
Fully-Connected Neural Network (FCNN). Another convenience of this technique is
the possibility of generating more information about multiple actions, which is a useful
prerequisite for future proposals.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The complexity of the current and future mobile network slicing infrastructure will
push on a full awareness of all involved processes. Traditional procedures and control-
ling will demand improvements and new methods to achieve the envisioned require-
ments.

The Machine Learning (ML) technology has been an important support for the evo-
lution of diverse issues and fields. Certainly, it would not be different in the telecom-
munication scenarios. Since the high processing of some algorithms is a drawback in
this area, mainly considering the Physical Layer environment, some solutions call for
a low-complexity attribute.

Considering these aspects and the necessary balance of throughput and reliability
for the Quality of Service (QoS) requirements, this work focused on Link Adapta-
tion, whether proposing solutions in control systems or the accuracy of the involved
indicators. The propositions related to these issues were implemented and tested.

As a result, a precise estimation of the Signal-to-Interference-plus-Noise Ratio, or
primary indicator, was efficiently executed by adopting the proposed Modified Mean
Square Error function plus a low-complexity Deep Learning Network. As could be
seen, a Deep Neural Network (DNN) was successfully used to supersede a complex
statistical computation even in low SINR. Also, it was verified that the same neural
network topology could be easily applied to different modulation options using the
respective trained biases and weights.

The subsequent proposition, referred to as the complementary indicator Error Cor-
rection Amplitude, presented a noticeable response in a way it can be used as a stan-
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dalone control scheme. Again, a low-complexity DNN similar to the one used in the
primary indicator was capable of establishing a normalized indicator that is not depen-
dent on the current Modulation and Coding Scheme (MCS) parameter. Moreover, this
Neural Network can also be fitted and calibrated to different transceiver implementa-
tions and different Bit Error Rate (BER) targets.

The PoC’s simulations show that with the utilization of the ECA indicator for the
link adaptation and a straightforward control, there is an improvement in throughput by
keeping the demanded reliability strictly. Its application is also an interesting strategy
to deal with low error rates since it can estimate error probability without bit error
occurrence. Other verified benefits of this indicator are low processing and no payload
consumption.

Finally, to integrate the proposed indicators into a control structure, some schemes
were suggested either conceptually or also using ML techniques. The minimal one,
using the ECA indicator as a unique control input, led to an implementation of a pre-
processing block applying another low-complexity DNN. This procedure was success-
fully achieved, indicating the versatility of ML techniques.

A reinforcement learning (RL) scheme was also implemented using a basic Q-
Learning method. A consistent result was carried out, which is a prevalidation of the
use of a more efficient algorithm using Deep Q-Learning (DQL). This enhanced tech-
nique is key to triggering a proposition for future work where the concept of Indirect
Decision for the MCS is established. In this scheme, the Channel Quality Indicator
(CQI) provides probability options of target achievement instead of a unitary MCS
index. It will be better described in the next section.

6.2 Future Work

The improvements of LA control capabilities go through providing more complete
data for the Base Station (BS) about the conditions of the receiver on the link. In this
way, decisions can be better taken when other statistics of the entire environment are
gathered to this information. The system can assume greater or lesser risks, as well as
higher or lower data rates, depending on the slice of service and the current usage of
the network resources. It is a complex task to be executed. Anyway and again, ML
technique is a candidate to support this process in a successful arrangement.

More complete information related to this approach can only be provided in terms
of Physical Layer environment. Once this data compilation is available, processing
methods are necessary to describe the link status better. Sending this processed info to
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the BS instead of a decided MCS index generates a more complete insight, providing
a better scenario for decision-making. A succinct diagram is shown in Figure 6.1.

Figure 6.1: Indirect decision: MCS table with achievement probabilities.

As mentioned in Chapter 5, the LA control employing DQL is a robust technique
to achieve superior performance. At the same time, this scheme can also deliver the
probability of achieving goals for each MCS index or a specific range of indexes. In
this case, actions can subsequently be taken according to this table and other system
QoS indicators.

To succeed in this approach, the DQL algorithm is effective too. Thus, the achieve-
ment probability table will be generated by collecting the Q-values of the desired MCS
indexes. A normalization function must be included. A Softmax function is an exam-
ple of how this calculation can be executed. Figure 6.2 better displays the diagram for
this implementation.

Figure 6.2: Proposed scheme using Deep Q-Learning and Softmax function.
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Among other implementations that can be performed for future work is a reinforce-
ment learning method to execute a Direct Decision with no unitary MCS index steps.
This would also be possible using a DQL technique.

The gap variance verified in ECA performance between some MCS indexes is due
to the exclusion of intermediate modulations. All the chosen options of modulation
order were based on the current mobile network standards (Fourth Generation of Mo-
bile Networks (4G) and Fifth Generation of Mobile Networks (5G)). The options have
constellations of N points where N = 2M and M is the modulation order. The modu-
lation order, M , is an even value from 2 to 8, generating the modulation types: QPSK,
16-QAM, 64-QAM, and 256-QAM, respectively. This way, the constellation shapes
are always squared. These are not mandatory selections. Then better results could be
achieved with odd values of M or using multidimensional constellation schemes.

Additionally, the MCS schemes could apply independent options of modulation
and coding. This is another advantageous approach to be evaluated since more effi-
cient choices can be found depending on constellation order and shape, plus different
forward error correction (FEC) rates.

As the Fifth Generation of Mobile Networks did not fully adopt the polar code for
the payload, other forward error correction coding techniques, such as low density
parity check (LDPC) and Turbo Code, can also be implemented and tested to provide
the ECA indicator using similar approaches executed in Chapters 4 and 5.
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A. Viseras, “DRLLA: Deep Reinforcement Learning for Link Adaptation,”
Telecom, vol. 3, no. 4, pp. 692–705, 2022. [Online]. Available: https:
//www.mdpi.com/2673-4001/3/4/37

[73] C. Hellings, A. Dehmani, S. Wesemann, M. Koller, and W. Utschick, “Evaluation
of neural-network-based channel estimators using measurement data,” in WSA

2019; 23rd International ITG Workshop on Smart Antennas, 2019, pp. 1–5.

[74] C. Wang, G. Wang, H. Wang, A. Chen, and R. Santiago, “Quality of service
(qos) contract specification, establishment, and monitoring for service level man-
agement,” in 2006 10th IEEE International Enterprise Distributed Object Com-

puting Conference Workshops (EDOCW’06), 2006, pp. 49–49.

[75] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.
The MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/
the-book-2nd.html

https://sol.sbc.org.br/index.php/w6g/article/view/17227
https://doi.org/10.1145/3341216.3342212
https://www.mdpi.com/2673-4001/3/4/37
https://www.mdpi.com/2673-4001/3/4/37
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


References 68

[76] R. Bellman, “Some Applications of the Theory of Dynamic Programming -
A Review,” Oper. Res., vol. 2, no. 3, pp. 275–288, 1954. [Online]. Available:
https://doi.org/10.1287/opre.2.3.275

[77] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,
“An Introduction to Deep Reinforcement Learning,” Foundations and Trends®

in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018. [Online]. Available:
https://doi.org/10.1561%2F2200000071

https://doi.org/10.1287/opre.2.3.275
https://doi.org/10.1561%2F2200000071


Appendix I

Codes

I.1 Deep Neural Network for SINR Estimation

I.1.1 Learning Code: QPSK
import numpy as np

from sklearn import preprocessing

from matplotlib import pyplot

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Activation

from keras.models import Sequential

import keras

from datetime import datetime

from packaging import version

# Preraring dataset

X_l = np.loadtxt("adapted_qpsk.csv")

y_l = np.loadtxt("diff_qpsk.csv")

logdir = "logs/scalars/" + "QPSK"

tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

X = X_l[200:800]

y = y_l[200:800]

# Data Scaling from 0 to 1, X and y originally have very different scales.

X_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

y_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

X_scaled = (X_scaler.fit_transform(X.reshape(-1,1)))

y_scaled = (y_scaler.fit_transform(y.reshape(-1,1)))

1



Appendix I Codes 2

# New sequential network structure.

model = Sequential()

# Input layer with dimension 1 and hidden layer i with 6 neurons.

model.add(Dense(1, kernel_initializer='uniform', activation='linear'))

# Hidden layer j with 4 neurons plus activation layer.

model.add(Dense(4, activation='linear'))

# Hidden layer k with 4 neurons.

model.add(Dense(4, activation='sigmoid'))

# Output Layer.

model.add(Dense(1))

# Model is derived and compiled using mean square error as loss

# function, accuracy as metric and gradient descent optimizer.

model.compile(loss='mse', optimizer='adam', metrics=["accuracy"])

# Training model with train data. Fixed random seed:

#np.random.seed(123)

model.fit(X_scaled, y_scaled, epochs=2000, batch_size=2, callbacks=[tensorboard_callback], verbose=2)

# Serialize model to JSON

model_json = model.to_json()

with open("model_qpsk_144d.json", "w") as json_file:

json_file.write(model_json)

# serialize weights to HDF5

model.save_weights("model_qpsk_144d.h5")

print("Saved model to disk")

# Predict the response variable with new data

predicted = model.predict(X_scaled)

# Plot in blue color the predicted adata and in green color the

# actual data to verify visually the accuracy of the model.

pyplot.plot(y_scaler.inverse_transform(predicted), color="red")

pyplot.plot(y_scaler.inverse_transform(y_scaled), color="green")

pyplot.legend(('Predicted', 'Data'), loc='lower right')

pyplot.show()

I.1.2 Learning Code: 16-QAM
import numpy as np

from sklearn import preprocessing

from matplotlib import pyplot

from keras.layers import Dense

from keras.layers import Dropout
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from keras.layers import Activation

from keras.models import Sequential

import keras

from datetime import datetime

from packaging import version

# Preraring dataset

X_l = np.loadtxt("adapted_16qam.csv")

y_l = np.loadtxt("diff_16qam.csv")

logdir = "logs/scalars/" + "16QAM"

tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

X = X_l[200:800]

y = y_l[200:800]

# Data Scaling from 0 to 1, X and y originally have very different scales.

X_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

y_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

X_scaled = (X_scaler.fit_transform(X.reshape(-1,1)))

y_scaled = (y_scaler.fit_transform(y.reshape(-1,1)))

# New sequential network structure.

model = Sequential()

# Input layer with dimension 1 and hidden layer i with 6 neurons.

model.add(Dense(1, kernel_initializer='uniform', activation='linear'))

# Hidden layer j with 4 neurons plus activation layer.

model.add(Dense(4, activation='linear'))

# Hidden layer k with 4 neurons.

model.add(Dense(4, activation='sigmoid'))

# Output Layer.

model.add(Dense(1))

# Model is derived and compiled using mean square error as loss

# function, accuracy as metric and gradient descent optimizer.

model.compile(loss='mse', optimizer='adam', metrics=["accuracy"])

# Training model with train data. Fixed random seed:

#np.random.seed(123)

model.fit(X_scaled, y_scaled, epochs=2000, batch_size=2, callbacks=[tensorboard_callback], verbose=2)

# Serialize model to JSON

model_json = model.to_json()

with open("model_16qam_144d.json", "w") as json_file:

json_file.write(model_json)
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# serialize weights to HDF5

model.save_weights("model_16qam_144d.h5")

print("Saved model to disk")

# Predict the response variable with new data

predicted = model.predict(X_scaled)

# Plot in blue color the predicted adata and in green color the

# actual data to verify visually the accuracy of the model.

pyplot.plot(y_scaler.inverse_transform(predicted), color="red")

pyplot.plot(y_scaler.inverse_transform(y_scaled), color="green")

pyplot.legend(('Predicted', 'Data'), loc='upper right')

pyplot.show()

I.1.3 Learning Code: 64-QAM
import numpy as np

from sklearn import preprocessing

from matplotlib import pyplot

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Activation

from keras.models import Sequential

import keras

from datetime import datetime

from packaging import version

# Preraring dataset

X_l = np.loadtxt("adapted_64qam.csv")

y_l = np.loadtxt("diff_64qam.csv")

logdir = "logs/scalars/" + "64QAM"

tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

X = X_l[200:800]

y = y_l[200:800]

# Data Scaling from 0 to 1, X and y originally have very different scales.

X_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

y_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

X_scaled = (X_scaler.fit_transform(X.reshape(-1,1)))

y_scaled = (y_scaler.fit_transform(y.reshape(-1,1)))

# New sequential network structure.

model = Sequential()
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# Input layer with dimension 1 and hidden layer i with 6 neurons.

model.add(Dense(1, kernel_initializer='uniform', activation='linear'))

# Hidden layer j with 4 neurons plus activation layer.

model.add(Dense(4, activation='linear'))

# Hidden layer k with 4 neurons.

model.add(Dense(4, activation='sigmoid'))

# Output Layer.

model.add(Dense(1))

# Model is derived and compiled using mean square error as loss

# function, accuracy as metric and gradient descent optimizer.

model.compile(loss='mse', optimizer='adam', metrics=["accuracy"])

# Training model with train data. Fixed random seed:

#np.random.seed(123)

model.fit(X_scaled, y_scaled, epochs=2000, batch_size=2, callbacks=[tensorboard_callback], verbose=2)

# Serialize model to JSON

model_json = model.to_json()

with open("model_64qam_144d.json", "w") as json_file:

json_file.write(model_json)

# serialize weights to HDF5

model.save_weights("model_64qam_144d.h5")

print("Saved model to disk")

# Predict the response variable with new data

predicted = model.predict(X_scaled)

# Plot in blue color the predicted adata and in green color the

# actual data to verify visually the accuracy of the model.

pyplot.plot(y_scaler.inverse_transform(predicted), color="red")

pyplot.plot(y_scaler.inverse_transform(y_scaled), color="green")

pyplot.legend(('Predicted', 'Data'), loc='lower right')

pyplot.show()

I.1.4 Learning Code: 256-QAM
import numpy as np

from sklearn import preprocessing

from matplotlib import pyplot

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Activation

from keras.models import Sequential

import keras
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from datetime import datetime

from packaging import version

# Preraring dataset

X_l = np.loadtxt("adapted_256qam.csv")

y_l = np.loadtxt("diff_256qam.csv")

logdir = "logs/scalars/" + "256QAM"

tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

X = X_l[200:800]

y = y_l[200:800]

# Data Scaling from 0 to 1, X and y originally have very different scales.

X_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

y_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))

X_scaled = (X_scaler.fit_transform(X.reshape(-1,1)))

y_scaled = (y_scaler.fit_transform(y.reshape(-1,1)))

# New sequential network structure.

model = Sequential()

# Input layer with dimension 1 and hidden layer i with 6 neurons.

model.add(Dense(1, kernel_initializer='uniform', activation='linear'))

# Hidden layer j with 4 neurons plus activation layer.

model.add(Dense(4, activation='linear'))

# Hidden layer k with 4 neurons.

model.add(Dense(4, activation='sigmoid'))

# Output Layer.

model.add(Dense(1))

# Model is derived and compiled using mean square error as loss

# function, accuracy as metric and gradient descent optimizer.

model.compile(loss='mse', optimizer='adam', metrics=["accuracy"])

# Training model with train data. Fixed random seed:

#np.random.seed(123)

model.fit(X_scaled, y_scaled, epochs=2000, batch_size=2, callbacks=[tensorboard_callback], verbose=2)

# Serialize model to JSON

model_json = model.to_json()

with open("model_256qam_144d.json", "w") as json_file:

json_file.write(model_json)

# serialize weights to HDF5

model.save_weights("model_256qam_144d.h5")

print("Saved model to disk")



Appendix I Codes 7

# Predict the response variable with new data

predicted = model.predict(X_scaled)

# Plot in blue color the predicted adata and in green color the

# actual data to verify visually the accuracy of the model.

pyplot.plot(y_scaler.inverse_transform(predicted), color="red")

pyplot.plot(y_scaler.inverse_transform(y_scaled), color="green")

pyplot.legend(('Predicted', 'Data'), loc='lower right')

pyplot.show()

I.2 Deep Neural Network for SINR Estimation -
Inference Block.

import pmt

import numpy as np

import tensorflow as tf

from gnuradio import gr

from tensorflow.python.ops.numpy_ops import np_config

from sklearn import preprocessing

from keras.models import model_from_json

from numba import jit

class blk(gr.sync_block):

def __init__(self, dnn_dis=0.0): # DNN disable parameter

gr.sync_block.__init__(

self,

name='SINR Estimation-DNN',

in_sig=[np.complex64],

out_sig=[np.float32, np.float32]

)

gpus = tf.config.list_physical_devices('GPU')

if gpus:

try:

for gpu in gpus:

tf.config.experimental.set_memory_growth(gpu, True)

logical_gpus = tf.config.list_logical_devices('GPU')

print(len(gpus), "Physical GPUs,", len(logical_gpus),\

"Logical GPUs")

except RuntimeError as e:

print(e)
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self.mcs = 0

self.mcs_d = 0

self.modul = 0

self.modul_d = 0

self.message_port_register_in(pmt.intern('msg_in'))

self.set_msg_handler(pmt.intern('msg_in'), self.handle_msg)

# if an attribute with the same name as a parameter is found,

# a callback is registered (properties work, too).

self.dnn_dis = dnn_dis

# Preraring dataset

# QPSK

X_l = np.loadtxt("adapted_qpsk.csv")

y_l = np.loadtxt("diff_qpsk.csv")

X = X_l[200:800]

y = y_l[200:800]

self.X_scaler_qpsk = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.y_scaler_qpsk = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.X_scaler_qpsk.fit(X.reshape(-1,1))

self.y_scaler_qpsk.fit(y.reshape(-1,1))

# 16QAM

X_l = np.loadtxt("adapted_16qam.csv")

y_l = np.loadtxt("diff_16qam.csv")

X = X_l[200:800]

y = y_l[200:800]

self.X_scaler_16 = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.y_scaler_16 = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.X_scaler_16.fit(X.reshape(-1,1))

self.y_scaler_16.fit(y.reshape(-1,1))

# 64QAM

X_l = np.loadtxt("adapted_64qam.csv")

y_l = np.loadtxt("diff_64qam.csv")

X = X_l[200:800]

y = y_l[200:800]

self.X_scaler_64 = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.y_scaler_64 = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.X_scaler_64.fit(X.reshape(-1,1))

self.y_scaler_64.fit(y.reshape(-1,1))
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# 256QAM

X_l = np.loadtxt("adapted_256qam.csv")

y_l = np.loadtxt("diff_256qam.csv")

X = X_l[200:800]

y = y_l[200:800]

self.X_scaler_256 = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.y_scaler_256 = preprocessing.MinMaxScaler(feature_range=(0, 1))

self.X_scaler_256.fit(X.reshape(-1,1))

self.y_scaler_256.fit(y.reshape(-1,1))

# load created models - QPSK

self.json_file = open('model_qpsk_144d.json', 'r')

self.model_qpsk_json = self.json_file.read()

self.json_file.close()

self.model_qpsk = model_from_json(self.model_qpsk_json)

# load weights into new model

self.model_qpsk.load_weights("model_qpsk_144d.h5")

# load created models - 16QAM

self.json_file = open('model_16qam_144d.json', 'r')

self.model_16_json = self.json_file.read()

self.json_file.close()

self.model_16 = model_from_json(self.model_16_json)

# load weights into new model

self.model_16.load_weights("model_16qam_144d.h5")

# load created models - 64QAM

self.json_file = open('model_64qam_144d.json', 'r')

self.model_64_json = self.json_file.read()

self.json_file.close()

self.model_64 = model_from_json(self.model_64_json)

# load weights into new model

self.model_64.load_weights("model_64qam_144d.h5")

# load created models - 256QAM

self.json_file = open('model_256qam_144d.json', 'r')

self.model_256_json = self.json_file.read()

self.json_file.close()

self.model_256 = model_from_json(self.model_256_json)

# load weights into new model

self.model_256.load_weights("model_256qam_144d.h5")

# Default configuration
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self.X_scaler = self.X_scaler_qpsk

self.y_scaler = self.y_scaler_qpsk

self.model = self.model_qpsk

self.max_value = np.float32(2.0)

self.factor = np.float32(1.414213562)

self.beta = np.float32(1.0)

def handle_msg(self, msg_pmt):

set_tx_mcs = pmt.intern("MCS")

if (pmt.car(msg_pmt) == set_tx_mcs):

msg = pmt.cdr(msg_pmt)

print (msg)

self.mcs_d = self.mcs

self.mcs = pmt.to_python(msg)

if self.mcs == self.mcs_d:

return

if self.mcs < 4:

self.modul_d = self.modul

self.modul = 0

elif self.mcs < 8:

self.modul_d = self.modul

self.modul = 1

elif self.mcs < 11:

self.modul_d = self.modul

self.modul = 2

elif self.mcs < 14:

self.modul_d = self.modul

self.modul = 3

if self.modul == self.modul_d:

return

if self.modul == 0:

self.X_scaler = self.X_scaler_qpsk

self.y_scaler = self.y_scaler_qpsk

self.model = self.model_qpsk

self.max_value = np.float32(2.0)

self.factor = np.float32(1.414213562)

self.beta = np.float32(1.0)

print ("***** config DNN: QPSK *****")

elif self.modul == 1:

self.X_scaler = self.X_scaler_16

self.y_scaler = self.y_scaler_16

self.model = self.model_16

self.max_value = np.float32(4.0)

self.factor = np.float32(3.16227766)

self.beta = np.float32(2.0)
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print ("***** config DNN: 16QAM *****")

elif self.modul == 2:

self.X_scaler = self.X_scaler_64

self.y_scaler = self.y_scaler_64

self.model = self.model_64

self.max_value = np.float32(8.0)

self.factor = np.float32(6.4807407)

self.beta = np.float32(3.0)

print ("***** config DNN: 64QAM *****")

elif self.modul == 3:

self.X_scaler = self.X_scaler_256

self.y_scaler = self.y_scaler_256

self.model = self.model_256

self.max_value = np.float32(16.0)

self.factor = np.float32(13.038413)

self.beta = np.float32(4.0)

print ("***** config DNN: 256QAM *****")

@jit

def mse_calc(self, n, complex_input):

max_value = self.max_value

factor = self.factor

beta = self.beta

mse = np.float32(0.0)

for i in range(n):

d_real = np.abs(np.real(complex_input[i]))*factor

d_imag = np.abs(np.imag(complex_input[i]))*factor

dec_real = np.round((d_real + 1.0)/2.0)*2.0 - 1.0

comp_real = np.float32(0.0)

if (d_real > max_value):

dec_real = max_value - 1.0

comp_real = np.abs(d_real - dec_real)

dec_imag = np.round((d_imag + 1.0)/2.0)*2.0 - 1.0

comp_imag = np.float32(0.0)

if (d_imag > max_value):

dec_imag = max_value - 1.0

comp_imag = np.abs(d_imag - dec_imag)

comp_real = beta*comp_real/factor

comp_imag = beta*comp_imag/factor

d_real = (d_real - dec_real)/factor

d_imag = (d_imag - dec_imag)/factor

mse = mse + d_real*d_real + d_imag*d_imag + comp_real*comp_real + \

comp_imag*comp_imag

return -10.0*np.log10(mse/n)

@tf.function(jit_compile=True) # XLA acceleration
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def predict(self, x):

return self.model(x)

def calc_error(self, snr): # error prediction

x = np.arange(1)

x[0] = (snr)

y = self.X_scaler.transform(x.reshape(-1, 1))

pred = self.predict(y)

scaled = self.y_scaler.inverse_transform(pred)

return scaled

def work(self, input_items, output_items):

n = np.size(input_items[0])

snr_adapt = self.mse_calc(n, input_items[0][:])

dnn_comp = self.calc_error(snr_adapt)

output_items[0][:] = snr_adapt

output_items[1][:] = snr_adapt + dnn_comp

return len(output_items[0])

I.3 Deep Neural Network description

I.3.1 DNN for SINR estimation - QPSK modulation.
name: 'dense'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: RandomUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[1.744565]], dtype=float32), array([-0.39607584], dtype=float32)]

name: 'dense_1'

trainable: True

dtype: float32

units: 4

activation: linear
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use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[-2.7459078, -2.691793 , -2.188306 , 1.4207704]], dtype=float32), array([-0.5015023 , 0.8987453 , 0.63677865, 0.0275382 ], dtype=float32)]

name: 'dense_2'

trainable: True

dtype: float32

units: 4

activation: sigmoid

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[ 1.5428836 , -0.5844092 , -1.066457 , 0.15086588],

[ 0.7825846 , -2.0736282 , -1.4029425 , -4.669783 ],

[-0.0183926 , -1.157625 , -1.4011582 , -2.3091369 ],

[-0.3506581 , 0.6435468 , 1.949831 , 0.95179504]], dtype=float32),

array([-0.89490986, -0.84202504, 0.63870823, -1.958233 ], dtype=float32)]

name: 'dense_3'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None
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[array([[ 0.87478286],

[ 0.5331497 ],

[-0.363003 ],

[-0.36531928]], dtype=float32),

array([0.2349322], dtype=float32)]

I.3.2 DNN for SINR estimation - 16-QAM modulation.
name: 'dense'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: RandomUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[-1.5231512]], dtype=float32), array([0.48227042], dtype=float32)]

name: 'dense_1'

trainable: True

dtype: float32

units: 4

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[ 2.5494463, 1.6521053, -0.9304318, -2.0497146]], dtype=float32),

array([ 0.82721186, 0.27608192, -1.1282926 , -0.2633901 ], dtype=float32)]

name: 'dense_2'

trainable: True

dtype: float32

units: 4
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activation: sigmoid

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[-2.62281 , -3.9025857 , -0.16771424, 0.91203034],

[-1.4043089 , -2.220354 , 0.5819991 , 0.94500756],

[ 0.6884257 , 2.1576314 , 0.94431645, 0.8787845 ],

[ 1.3302621 , 2.1502903 , -0.5246794 , -1.2474699 ]], dtype=float32),

array([-0.8571584 , -1.4458402 , -0.6312608 , -0.84736884], dtype=float32)]

name: 'dense_3'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[ 0.4077577 ],

[-0.40018824],

[-0.2564823 ],

[ 1.1334004 ]], dtype=float32),

array([0.02707014], dtype=float32)]

I.3.3 DNN for SINR estimation - 64-QAM modulation.
name: 'dense'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: RandomUniform
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bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[-1.5649678]], dtype=float32), array([0.6780824], dtype=float32)]

name: 'dense_1'

trainable: True

dtype: float32

units: 4

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[ 0.6845124 , -3.2464304 , -0.30720258, 1.2212253 ]],

dtype=float32), array([ 0.33447587, -0.9892976 , 0.8300899 , 0.37142828], dtype=float32)]

name: 'dense_2'

trainable: True

dtype: float32

units: 4

activation: sigmoid

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[-1.2263339 , -0.736026 , -1.7499377 , -0.14865619],

[ 1.5564194 , 1.2173266 , 4.9087057 , -1.4162921 ],

[ 0.50010645, 1.0052675 , -1.1484196 , -2.531729 ],

[-1.0023221 , -0.48698905, -5.23182 , 0.63789666]], dtype=float32),

array([-0.17096059, 0.48393083, -1.5232935 , -1.6049603 ], dtype=float32)]
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name: 'dense_3'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[ 0.47277203],

[-0.79940933],

[-0.18062598],

[ 0.5554822 ]], dtype=float32),

array([0.51508737], dtype=float32)]

I.3.4 DNN for SINR estimation - 256-QAM modulation.
name: 'dense'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: RandomUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[1.4903759]], dtype=float32), array([-0.6253101], dtype=float32)]

name: 'dense_1'

trainable: True

dtype: float32

units: 4

activation: linear

use_bias: True
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kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[-2.592138 , -2.7536142, 2.2150857, -2.2256777]], dtype=float32),

array([ 1.3707513 , 0.86395025, -1.4262638 , -0.26397267], dtype=float32)]

name: 'dense_2'

trainable: True

dtype: float32

units: 4

activation: sigmoid

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None

[array([[ 2.8943214 , -1.5125563 , -0.0172313 , 3.170016 ],

[ 2.1509678 , -1.3592256 , 0.51694417, 2.4633443 ],

[-2.3070054 , -0.36173788, 0.1866049 , -2.7771604 ],

[ 0.634983 , -1.3760759 , 2.0622723 , 1.2282077 ]], dtype=float32),

array([ 0.5810818 , 1.0439905 , -0.88657016, 0.89210737], dtype=float32)]

name: 'dense_3'

trainable: True

dtype: float32

units: 1

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None
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[array([[ 0.4171708 ],

[-0.20888531],

[ 0.848935 ],

[-0.4000026 ]], dtype=float32),

array([0.20988683], dtype=float32)]

I.4 Machine Learning for Link Adaptation.

I.4.1 Direct Decision with Q-Learning
import numpy as np

import matplotlib.pyplot as plt

# Environment:

number_of_mcs = 22

number_of_snr = 280

eca_max = 5

# Actions:

#codes: 0 = stay (same MCS), 1 = up (fall forward), 2 = down (fall back)

actions = ['stay', 'up', 'down']

# Q-values: Q(s, a)

#the matrix contains 22 MCS indexes, 60 (SNR + ECA) values and 3 actions.

q_values = np.zeros((number_of_mcs, number_of_snr, 3))

# Rewards:

rewards = np.zeros((number_of_mcs, number_of_snr))

snr_limits = [3.8, 4.6, 5.5, 6.2, 7.3, 7.8, 10.3, 11.3, 12.2,\

13.2, 14.3, 14.9, 16.1, 16.8, 17.9, 18.9, 19.7,\

20.4, 24.4, 25.3, 26.4, 27.1]

for i in range (number_of_mcs):

for j in range(number_of_snr):

if (j > int(10*(snr_limits[i]))):

rewards[i,j] = i + 20

elif (j > int(10*(snr_limits[i]-0.5))):

rewards[i,j] = 0

else:

rewards[i,j] = -280 + j

if (j == int(10*snr_limits[i])):

rewards[i,j] = i + j

print (rewards[20])
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def get_random_position():

return np.random.randint(number_of_mcs), np.random.randint(number_of_snr)

def get_next_action(current_mcs_index, current_snr_index, epsilon):

if np.random.random() < epsilon:

return np.argmax(q_values[current_mcs_index, current_snr_index])

else:

return np.random.randint(3) #random action

def get_next_position(current_mcs_index, action_index):

new_mcs_index = current_mcs_index

if actions[action_index] == 'up'and current_mcs_index <(number_of_mcs - 1):

new_mcs_index += 1

elif actions[action_index] == 'down' and current_mcs_index > 0:

new_mcs_index -= 1

return new_mcs_index

def get_mcs(start_mcs_index, start_snr_index, eca_index):

current_snr_index = int(10*(start_snr_index)) + int(0.5 - eca_index)

current_mcs_index = start_mcs_index

count_stay = 0

count_max = 0

while count_stay < 2:

action_index = get_next_action(current_mcs_index, current_snr_index, 1.)

if action_index == 0:

count_stay += 1

current_mcs_index = get_next_position(current_mcs_index, action_index)

count_max += 1

if (count_max > 20):

break

return current_mcs_index

# training parameters

discount_factor = 0.8

learning_rate = 0.9 #learning rate

# training

for episode in range(200000):

mcs_index, snr_index = get_random_position()

action_index = 1

count = 0

while count < 20:

if episode < 150000:

epsilon = 0.1

else:
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epsilon = 0.9

action_index = get_next_action(mcs_index, snr_index, epsilon)

if action_index == 0:

count += 1

old_mcs_index, old_snr_index = mcs_index, snr_index

mcs_index = get_next_position(mcs_index, action_index)

reward = rewards[mcs_index, snr_index]

old_q_value = q_values[old_mcs_index, old_snr_index, action_index]

difference = reward + (discount_factor * np.max(q_values[mcs_index,\

snr_index])) - old_q_value

new_q_value = old_q_value + (learning_rate * difference)

q_values[old_mcs_index, old_snr_index, action_index] = new_q_value

print('Training complete!')

decided_mcs = np.zeros(number_of_snr)

for i in range(number_of_snr):

decided_mcs[i] = get_mcs(0,i/10.0,1.0)

print (decided_mcs)

np.savetxt('decided.txt', decided_mcs, delimiter=',')

# data read

file = "decided.txt"

y = np.loadtxt(file)

x = np.arange(len(y))

x1 = x[30:280]/10.0

y1 = y[30:280]+1

# style

plt.style.use('seaborn-darkgrid')

plt.figure(figsize=(14,5))

plt.plot(x1, y1, color="black", linewidth=1.4, alpha=1)

plt.xlabel('Signal to Noise Ratio (dB)', fontsize=20)

plt.ylabel('MCS', fontsize=20)

plt.xticks(np.arange(3,29,1), fontsize=15)

plt.yticks(np.arange(22)+1, fontsize=15)

plt.xlim([3.0, 28])

plt.savefig("decided_mcs")

plt.show()
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I.4.2 Indirect Decision with achievement index output

Learning Code

from keras.models import Sequential

from keras.layers import Dense

from keras.models import model_from_json

import numpy as np

from keras.models import load_model

import os

n_inputs = 2

# Load dataset

dataset = np.loadtxt("train_eca_ber.csv", delimiter=",")

# Split into input (X) and output (Y) variables

X = dataset[:,0:n_inputs]

Y = dataset[:,n_inputs]

# Create model

model = Sequential()

model.add(Dense(4, input_dim=n_inputs, activation='linear'))

model.add(Dense(4, activation='sigmoid'))

model.add(Dense(1))

# Compile model

model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])

# Fit model

model.fit(X, Y, epochs=20000, batch_size=64, verbose=2)

# Evaluate model

scores = model.evaluate(X, Y, verbose=0)

print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

# Save model descriptor

model_json = model.to_json()

with open("model_eca.json", "w") as json_file:

json_file.write(model_json)

# Save model weights

model.save_weights("model_eca.h5")

Inference Code

import numpy as np

from matplotlib import pyplot

from keras.models import model_from_json

# Load created model

json_file = open('model_eca.json', 'r')

loaded_model_json = json_file.read()
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json_file.close()

loaded_model = model_from_json(loaded_model_json)

# Load weights

loaded_model.load_weights("model_eca.h5")

# Summarize model

loaded_model.summary()

n_mcs = 22

mcs = np.zeros(n_mcs)

x1 = np.zeros(n_mcs)

x2 = np.zeros(n_mcs)

x3 = np.zeros(n_mcs)

x4 = np.zeros(n_mcs)

for i in range(n_mcs):

mcs[i] = i + 1

x = np.array([mcs[i]/22,0.25], ndmin=2)

x1[i] = 10**(-12*(loaded_model.predict([x])))

x = np.array([mcs[i]/22,1.0], ndmin=2)

x2[i] = 10**(-12*(loaded_model.predict([x])))

x = np.array([mcs[i]/22,2.0], ndmin=2)

x3[i] = 10**(-12*(loaded_model.predict([x])))

x = np.array([mcs[i]/22,8.0], ndmin=2)

x4[i] = 10**(-12*(loaded_model.predict([x])))

pyplot.figure(figsize=(10, 5))

pyplot.semilogy(mcs, x1,'o',markersize=8,color="red",label='ECA=0.25')

pyplot.semilogy(mcs, x2,'ˆ',markersize=8,color="blue",label='ECA=1.0')

pyplot.semilogy(mcs, x3,'s',markersize=8,color="orange",label='ECA=2.0')

pyplot.semilogy(mcs, x4,'>',markersize=8,color="black",label='ECA=8.0')

pyplot.grid()

pyplot.xlim(0, 29)

pyplot.ylim(0.0001, 0.0000001)

pyplot.xlabel('MCS', fontsize=14)

pyplot.ylabel('BER (DNN output)', fontsize=16)

pyplot.xticks(np.arange(1,23,1), fontsize=14)

pyplot.yticks(fontsize=14)

pyplot.legend(fontsize=12, loc='upper right')

pyplot.savefig('eca_ber.pdf')

pyplot.show()

I.4.3 Low complexity DNN description
name: 'dense'

trainable: True
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batch_input_shape: (None, 2)

dtype: float32

units: 4

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None}

[array([[ 0.41089684, -0.27577838, 0.20587917, -0.08847548],

[ 1.5422895, -1.3661727, -4.703927, 0.20001416]], dtype=float32),

array([ 1.3518943, 1.1140927, -0.29445174, 0.00925397], dtype=float32)]

name: 'dense_1'

trainable: True

dtype: float32

units: 4

activation: sigmoid

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros

kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None}

[array([[ 0.50372106, 1.6832101, 4.371791, 0.517354],

[ 0.9896978 , -1.958983, 3.5532384, 0.5536084],

[ 0.01298787, -6.7618065, 0.16763994, -0.10537869],

[-0.65475005, 0.01550872, -3.1136909, -0.01021753]], dtype=float32),

array([14.819842, -0.50683445, 3.8010275, 0.34193793], dtype=float32)]

name: 'dense_2'

trainable: True

dtype: float32

units: 4

activation: linear

use_bias: True

kernel_initializer: GlorotUniform

bias_initializer: Zeros
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kernel_regularizer: None

bias_regularizer: None

activity_regularizer: None

kernel_constraint: None

bias_constraint: None}

[array([[ 1.5882529],

[-2.1631515],

[ 1.2733723],

[-1.3134537]], dtype=float32),

array([0.99261254], dtype=float32)]

I.4.4 Indirect Decision with Achievement Probability

Learning Code

import numpy as np

import random

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

import gym

from gym import Env

from gym.spaces import Discrete, Box, Dict, Tuple

from rl.agents import DQNAgent

from rl.policy import BoltzmannQPolicy

from rl.memory import SequentialMemory

class DQN_Env(Env):

def __init__(self):

# Actions: down, stay, up

self.action_space = Discrete(3)

# States: MCS, SINR, ECA

self.mcs_min = 0

self.mcs_max = 21

self.sinr_min = 0

self.sinr_max = 40

self.eca_min = 0

self.eca_max = 5

self.observation_space = Box(low=np.array([self.mcs_min,

self.sinr_min, self.eca_min]), high=np.array([self.mcs_max,

self.sinr_max, self.eca_max]), shape=(3,))
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# Set states

self.state = self.observation_space.sample()

self.count = 10

self.sinr_lim = [3.8, 4.6, 5.5, 6.2, 7.3, 7.8, 10.3, 11.3, 12.2,

13.2, 14.3, 14.9, 16.1, 16.8, 17.9, 18.9, 19.7,

20.4, 24.4, 25.3, 26.4, 27.1]

self.window_sinr = 0.8

self.window_eca = 0.2

self.eca_target = 1.0

self.lim_sinr_inf = self.sinr_lim[10] - self.window_sinr

self.lim_sinr_sup = self.sinr_lim[10] + self.window_sinr

def best_action(self, sinr, eca):

if eca > (self.eca_target-self.window_eca) and

eca < (self.eca_target + self.window_eca):

return 1

elif eca > (self.eca_target + self.window_eca):

return 0

elif sinr < self.lim_sinr_inf:

return 0

elif eca < (self.eca_target - self.window_eca) and

sinr > self.lim_sinr_sup:

return 2

else:

return 1

def step(self, action):

# Apply action

# 0 = down

# 1 = stay

# 2 = up

mcs = self.state[0]

sinr = self.state[1]

eca = self.state[2]

self.lim_sinr_inf = self.sinr_lim[mcs] - self.window_sinr

self.lim_sinr_sup = self.sinr_lim[mcs] + self.window_sinr

self.state[0] += action - 1

self.state[1] += (action - 1) + random.randint(-5,5)

self.state[2] += (action - 1) + random.randint(-1,1)

# Test the limits

if self.state[0] < self.mcs_min:

self.state[0] = self.mcs_min

if self.state[0] > self.mcs_max:
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self.state[0] = self.mcs_max

if self.state[1] < self.sinr_min:

self.state[1] = self.sinr_min

if self.state[1] > self.sinr_max:

self.state[1] = self.sinr_max

if self.state[2] < self.eca_min:

self.state[2] = self.eca_min

if self.state[2] > self.eca_max:

self.state[2] = self.eca_max

self.count -= 1

# Calculate reward

best_act = self.best_action(sinr, eca)

if (action == 0) and (best_act == 0):

reward = 1

elif (action == 2) and (best_act == 2):

reward = 2

elif (action == 1) and (best_act == 1):

reward = 1

else:

reward = -2

if eca > (self.eca_target + self.window_eca) and action != 0:

reward -= 5

if sinr < self.lim_sinr_inf and action != 0:

reward -= 5

if eca > (self.eca_target - self.window_eca) and

eca < (self.eca_target + self.window_eca):

if action == 1:

reward += 10

# Check if number of steps is done

if self.count <= 0:

done = True

else:

done = False

# Placeholder for info

info = {}

# Return step information

return self.state, reward, done, info
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def reset(self):

self.state = np.array([10,20,0])

self.count = 100

return self.state

env = DQN_Env()

states = env.observation_space.shape

actions = env.action_space.n

def build_model(states, actions):

model = keras.Sequential()

model.add(Flatten(input_shape=(1,3)))

model.add(Dense(12, activation='relu'))

model.add(Dense(actions, activation='linear'))

return model

model = build_model(states, actions)

model.summary()

def build_agent(model, actions):

policy = BoltzmannQPolicy()

memory = SequentialMemory(limit=100000, window_length=1)

dqn = DQNAgent(model=model, memory=memory, policy=policy,

nb_actions=actions, nb_steps_warmup=1000,

target_model_update=1e-2)

return dqn

dqn = build_agent(model, actions)

dqn.compile(Adam(learning_rate=0.002), metrics=['mae'])

dqn.fit(env, nb_steps=50000, visualize=False, verbose=1)

scores = dqn.test(env, nb_episodes=50, visualize=False)

print(np.mean(scores.history['episode_reward']))

dqn.save_weights('dqn_weights_la_1h_12.h5f', overwrite=True)

def softmax(x):

ex = np.exp(x - np.max(x))

return ex/ex.sum()

x = np.zeros((1,1,3))

for i in range(22):

x[0][0][0] = i*1.0

x[0][0][1] = env.sinr_lim[i]
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x[0][0][2] = 1.0

y = 100*softmax(model.predict(x))

print('MCS', i+1, model.predict(x), y)
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